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1. Introduction

Pedestrain detection and counting has been heavily researched in the last few years and people
have made great improvement. Dalal’s HoG (Histogram of Gradients) operator has been widely
used in pedestrain detection with SVM, AdaBoost or other machine learning algorithms, which we
use as the basic detector in our project.

However, detection is not enough to count the pedestrains in the ROI, therefore we have to track
each person. Our basic idea is to use particle filter to track each specific person.

Particle filter is an approximation of Bayes inference and is widely used in tracking. Compared
with Karman filter, it can simulate any probability distribution. However it’s main drawback is
the high complexity of computation. Which we will try to optimize with multiple threads.

This project is hosted as a private project on GitHub. You will find the project page and the
documents on it.

2. Basic Plan

Here is our basic plan for this project.

• Code Reconstruction

The code offered by the teacher is not object-oriented, and is very difficult to modify and
extend. Hence our first goal is to reconstruct the program so that we can easily build our
particle filter on it.

• Merge Paritcle Filter

The main idea is from [2], in which there are mainly two new ideas. The first one is that
instead of using one offline trained general classifier, they train one online classifier for each
detected pedestrain and the classifier is only updated on non-overlapping detections. Secondly,
the detections are used to guide the particles’ propagation which is implemented to estimates
the conditional likelihood of the new observation .

– Data Association Problem Use the greedy algorithm to find the pair(tr, d) with maximum
score in the matching score matrix and delete the columns and rows belonging to tracker
t∗r and d

– Online Boosting
The online boosting classifier for each pedestrain is similar to that in [3] and we will select
some features to train it.

• Optimization

With multiple threads or even GPU programming, we may archieve the real time interactive
result.

3. Code Reconstruction

First we reconstruct the code. We left kmeas and meanshift algorithm unchanged cause they are
not important in our project. And we divide the whole project into these 5 parts.

• Utility

We implement some utility classes here. Mainly some geometry classes such as Size, Rect,
Point2D. These are very similar to those in OpenCV library. However we still implement
them as sometimes we need overload some operators. We also implement a container called
Pool, which is basically just a vector that never shrinks, in order to improve performance.
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And we also reconstruct the ConnectedComponents here. It basically does the same thing as
before.

• IntegralImage

As most of the features will be extracted using integral image to speed up, we implement an
IntegralImage interface. This is an abstract class containing some virtual functions. The
most important method is:

1 // Normal integral image.

2 virtual unsigned int GetSum(const Rect &roi) const;

3
4 // Used in HoG integral image.

5 virtual void GetSum(const Rect &roi , float *result) const;

Other integral image classes should overload these two functions according to their purpose.
Here we mainly implement 3 integral images.

GrayScaleIntegralImage calculates the integral image for a grayscale image. It overloads
the first GetSum function.

HoGIntegralImage calculates the 9 bins HoG for a grayscale image. Of course this is used to
extract the HoG feature.

RGIIntegralImage calculates the integral image for 3 channel: RED, BLUE, INTENSITY.

• FeatureExtractor

In this part we implement three classes: Feature, HaarFeature, HoGFeature, RGIFeature.

Feature is bascially just a container for the feature we extraced using the other two classes.

HaarFeature extracts a haar-like feature given an integral image and roi. When being con-
structed, it randomly chooses from the five haar-like features.

HoGFeature extracts a HoG feature given an HoGIntegralImage and roi.

RGIFeature extracts a RGI feature given an RGIIntegralImage and roi.

• Classifier

Here we reconstruct the original AdaBoost classifier with the following classes.

First we build an WeakClassifier interface and it has two main virtual methods:

1 virtual bool Update(const IntegralImage *intImage ,

2 const Rect &roi , int target );

3 virtual float Evaluate(const IntegralImage *intImage ,

4 const Rect &roi);

Evaluate evaluates the roi with the feature inside this weakclassifier, while Update is used in
training.

Then we implement a class called WeakClassifierHoG. It doesn’t overload Update method
therefore it can’t be trained. It’s only used in the offline AdaBoost classifier.

We construct the AdaBoost classifier using WeakClassifierHoG.

• Detector

With the AdaBoost classifier above we are able to build the detectors now.

ImageDetector uses the AdaBoost classifier and slide windows to detect pedestrain in the
whole image.

BKGCutDetector inherits from ImageDetector. It cuts the background and uses the ConnectedComponents
to speed up the detection. When it is not sure whether a connected component is a pedestrain
or not, it calls ImageDetector to judge.

VideoDetector receives a pointer of ImageDetector and use it to detect pedestrain in every
two frames. Notice that with virtual function we can use BKGCutDetector here as well.

Besides, while reconstructing the program, we rewrite some parts of the program in a more memory
friendly way, which leads to quite tremendous improvement. The original video detector on the
first training video takes 212s, while our reconstructed program takes 66s with one main thread.
After optimizing some parameters it reduces to 27s without deteriorating its precision.

Here are some results from our reconstruction: Figure 1. We can see that with background cut we
have less false positive.
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(a) ImageDetector (b) BKGCutDetector

Figure 1: Detection Results

4. Online Boosting

After the reconstruction, we start to work on the online boosting algorithm to track a single target.
The main work is focus on Classifier part. We implement the following new classes.

• EstimatedGaussianDistribution

Given a feature f(x), the probability of P (1|f(x)) and P (−1|f(x)) is estimated as Gaussian
distribution[3]. This Gaussian distribution is estimated with Kalman filter[7]. We use the
following update equations for adaptive estimation from [3]:

Kt =
Pt−1

Pt−1 +R
(1a)

µt = Ktf(x) + (1−Kt)µt−1 (1b)

σ2
t = Kt(f(x)− µt)

2 + (1−Kt)σ
2
t−1 (1c)

Pt = (1−Kt)Pt−1 (1d)

• ClassifierThreshold

It estimates the Gaussian distribution for both positive features N(µ+, σ+) and negative
features N(µ−, σ−). Then it uses a simple distance threshold to a new feature to whether
positive or negative: h(x) for ”hypothesis”

h(x) = min
+,−

(D(f(x), µ+), D(f(x), µ−)) (2)

where D(f(x), µ) is just the Euclidean distance in feature space.

• WeakClassifier

It uses some feature above and the ClassifierThreshold to build a weak classifier. For
classify, it uses HaarFeature to extract the feature and sends it to ClassifierThreshold to
classify. For training, it uses the Kalman filter in EstimatedGaussianDistribution.

Here we will test Haar-like feature and RGI feature for online boosting.

• ClassifierSelector

Given a pool of weak classifiers, the ClassifierSelector selects the best one with lowest
error rate.

– Training
Each training feature f(x) has an importance λ, and we use the idea from [6] to draw a
random variable k ∼ Poisson(λ) and this feature is trained for k times.
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– Selecting
For each weak classifier, we maintain two vaiables λcorrect and λwrong:

λcorrect =
∑

icorrect

λi (3a)

λwrong =
∑

iwrong

λi (3b)

And the error rate is estimated by:

err =
λwrong

λcorrect + λwrong
(4)

Then we choose the best weak classifier with lowest error rate.

– Replacing
To improve the performance, each time we not only choose the best weak classifier but
also replace the worst one with a randomly generated new weak classifier.

• StrongClassifier

The StrongClassifier has N ClassifierSelectors, each with a voting weight αi. The
final hypothesis is:

hstrong(x) = sign(

N∑
i=1

αi · hselectori (x)) (5)

Suppose erri is the error rate of the ith selector, and then the voting weight is:

αi = ln(
1− erri
erri

) (6)

And the importance of this sample is updated with:

λi+1 = λi ·
√

erri
1− erri

, if hselectori correct (7a)

λi+1 = λi ·
√

1− erri
erri

, if hselectori wrong (7b)

5. Particle Filter

After we have the online boosting strong classifier. We try to combine it with particle filter.

• SingleSampler

Given a target, it samples around it the positive and negative samples using Gaussian noise.
Here is the samples: Figure 2, red for negative samples and blue for positive ones.

This is used in training the classifier.

• ParticleFilterConstVelocity

This is a basic particle filter with constant velocity. The state space is just the position
[upper, left] and the velocity. The motion model is also very simple:

pt = pt−1 + vt−1 +N(0, σp) (8)

vt = vt−1 +N(0, σv) (9)

where N(0, σp) is a Gaussian random variable with variance proportional to the size of the
target, and N(0, σv) is a Gaussian random vairiable with variance proportional to how many
frames in the past has been successfully detected.

• ParticleFilterTracker

This class just combines everything together, use particle filter and strong classifier to track
a target.
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(a) SingleSampler

Figure 2: Detection Results

6. Match Matrix

Since we are trying to track mulitple targets, we will have multiple detections and targets in one
frame. In order to solve this data-association problem, we define a match score[2]:

s(tr, d) = g(tr, d) · (ctr(d) + α ·
N∑

p∈tr
pN (d− p)) (10)

The exact meaning of this equation can be found in [2]. We won’t talk much about it here.

A match score matrix will be calculated for each pair of (target, detection). Then a greedy algorithm
will be applied to find the match.

(a) find the maximum match score and set this as a matched pair

(b) eliminate this target and this detection

(c) go back to (a) if there are still unmatched detections and targets

(d) finally only pairs with match score higher than a threshold will be taken

7. Continous Energy Minimize Method

Since the result from HOG detector and particle filter is not very good, therefore we also tried
another method from [4][5][1]. It use a Kalman filter or an extended Kalman filter to get a initial
tracking result, then minimize an energy function within a temporal window. However this method
is not causal and uses information from the future, therefore it can not be realtime.

8. Experiment

All the experiment is executed on Dell Inspiron 14R SE with the following configuration. All the
experiment result can be found here.

• Intel Core i7-3612QM 2.10GHz

• 8.00GB RAM

• System: Windows 8.1 x64

• OpenCV: 3.00

For video we have three clips: 1.avi, 2.avi, 3.avi.

For single image detection we only use test.jpg, which is from 1.avi.

The original baseline program is tested with all default settings.

With the following configuration we tested our single tracker on a small video clip. The result can
be found here.

5

https://zerowong.github.io/PedestrainCounting/results/
https://zerowong.github.io/PedestrainCounting/results/test/1.avi
https://zerowong.github.io/PedestrainCounting/results/test/2.avi
https://zerowong.github.io/PedestrainCounting/results/test/3.avi
https://zerowong.github.io/PedestrainCounting/results/test/test.jpg
https://zerowong.github.io/PedestrainCounting/results/test/1.avi
https://zerowong.github.io/PedestrainCounting/results/singleTrackerTestGray01.avi


• The online boosting classifier is built with RGI subpatch feature.

• The particle filter resamples with confidence of each particle.

• 500 particles.

• User initializes the target bounding box.

We can see that the classifier works quite good in Figure 3. After observation, the particles
are drawn with their confidence. The brighter the particle is, the more confidence it has.
Notice that the particle is at the upper-left corner of the target.

(a)

Figure 3: Particles Confidence

• Drift problem.

From Figure 4 we can see that the current grayscale Haar-like classifier can still not distinguish
different pedestrains. We think this is due to the grayscale haar-like feature doesn’t contain
enough information. [2] reports that with RGI (Red, Green, Intensity) histogram feature, 3
bins for each channel the results are quite good.

Hence we use RGI feature to construct the weak classifier. The resulting video can be found
here. From this video and Figure 5 we can see that the classifier is more robustic and can
handle some situation as two people crossing each other. However in Figure 5(b) the classifier
still goes for wrong pedestrain! Well they wear the same jeans.

(a) Original target (b) Drift to another target

Figure 4: With grayscale haar-like feature, the tracker lost its target.(Black for original target)

• HoG Detector.

We first use the simple HoG detector to detect a single picture.

6

https://zerowong.github.io/PedestrainCounting/results/singleTrackerTestRGI01.avi


(a) Original target (b) Drift to another target

Figure 5: With RGI feature, the tracker is more robustic, but still lost its target finally. (Black for
original target)

Time Accuracy False Positive
Original 3.43s 5 / 6 3
Reconstructed 3.20s 5 / 6 2

• Background Cut Detector.

We use the simple Background cut detector to detect pedestrain in a single picture.

Time Accuracy False Positive
Original 1.76s 6 / 6 0
Reconstructed 1.27s 5 / 6 0

• HoG Detector for Video.

We use the simple HoG detector to detect pedestrain in a video.

Time Accuracy False Positive(per frame)
Original 1051s 48.9% 1.47
Reconstructed 900s 48.7% 1.41

• Background Cut Detector for Video.

We use the simple Background Cut detector to detect pedestrain in a video.

Time Accuracy False Positive(per frame)
Original 207.36s 52.7% 0.13
Reconstructed 159.14s 52.4% 0.15

• Multiple Pedestrains Tracking

This is the finally object of this project. However after two months’ hard-working, we still
can’t get satisfactory result. The result can be found here. We will analyse the results.

First we can see in Figure 6(a) that when there are no occlution, the detector works fine, and
the multiple tracker successfully initializes the three targets and the count them.

However when the pedestrain is occluded, the detector failed to detect him. And since we
didn’t have any occlusion reasoning for this situation, the particle filter soon lost its target,
which can been seen in Figure 6(b).

• Energy Minimization

Figure 7(b) shows the result of energy minimization method. We can see that it’s very good.
However as discussed above, this method is not causal.

• Pedestrain Counting

We also test our particle filter method and the energy minimization method on pedestrain
counting on PETS 2009 S3MF1. Figure 7 shows the result.
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(a) Initialization of Multiple Tracker (b) Tracker lost its target.

Figure 6: Result of Multiple Tracker

(a) MultipleTracker (b) Energy Minimization

Figure 7: CountResult

Particle Filter Energy Minimization Ground Truth
Number of Pedestrain 6 7 7

9. Summary

• Accomplishment

We reconstructed the original baseline Adaboost classifier and improved the performance.

An online-boosting tracking system has been successfully implemented. It is quite good in
tracking for single target. We also tried HoG, Haar-like and RGI features.

• Problems

Since this is a tracking system based on detection, it requires a state of art detector. However
the detector we used here is not so good. If the detector fails to detect the target for consecutive
frames, the particle filter will also loses its target.

What’s more, the match matrix is not working very fine. If there are multiple targets nearby,
it sometimes gets confused.

Also since all the detection and tracking are done without depth information, this makes
occlution reasoning imposssible.

All of these problems limit the performance of our system.
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• Solutions

The solutions to the above problem is straight forward. Use a state-of-art detector will sig-
nificantly improve the performance. And also depth information will help a lot.
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