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What is a Computer?

• Five components:
• Input (keyboard, mouse, etc.).

• Output (display, printer).

• Memory (cache, main memory, disk, SSD).

• Datapath.

• Control.

• Our primary focus:
• Datapath and control.

• Interaction with memory.

• Implemented with billions of transistors.
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Opening the Box – iPhone XS Max
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Opening the Box – Motherboard
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Processor Organization
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• Control needs to have circuitry to
• Decide which is the next instruction.

• Fetch instruction from memory.

• Decode the instruction.

• Issue and control it through the 
datapath.

• Control what operations the datapath 
performs.

• Datapath needs to have circuitry to
• Execute instructions – function units 

(e.g., adder) and storage locations (e.g., 
registers).

• Interconnect components so that 
instructions can be executed as required.

• Load and store data from memory.



System Software

• Operating System
• Supervising program that interfaces the user’s program with the 

hardware (e.g., Linux, iOS, Windows)

• Handles basic input and output operations

• Allocates storage and memory

• Provides for protected sharing among multiple applications

• Compiler
• Translate programs written in a high-level language(e.g., C, 

Java) into instructions that the hardware can execute
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System Software

• Which one is not a task for an operating system?
• A: output images to the screen.

• B: create files.

• C: translate C program to assembly language.

• D: switch processes that run on the processor.

• Answer: C
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Advantages of High-Level Languages?

• Allow the programmer to think in a more natural language and for their intended use (Fortran for 
scientific computation, Cobol for business programming, Lisp for symbol manipulation, Java for web 
programming, ...)

• Improve programmer productivity – more understandable code that is easier to debug and validate

• Improve program maintainability

• Allow programs to be independent of the computer on which they are developed (compilers and 
assemblers can translate high-level language programs to the binary instructions of any machine)

• Emergence of optimizing compilers that produce very efficient assembly code optimized for the target 
machine

Very little programming is done today at the assembler lever.
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Traditional Compilation Flow
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Below the Program

• High-level language program (in C)
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void swap(int v[], int k) {
  int tmp;
  tmp = v[k];
  v[k] = v[k + 1];
  v[k + 1] = tmp;
}

• Assembly language (in RISC-V)
swap(int*, int):
  slli  a1,a1,2
  add   a0,a0,a1
  lw   a4,0(a0)
  lw   a5,4(a0)
  sw   a4,4(a0)
  sw   a5,0(a0)
  ret

0: 00259593         slli a1,a1,0x2
   4: 00b50533         add a0,a0,a1
   8: 00052703         lw a4,0(a0)
   c: 00452783         lw a5,4(a0)
  10: 00e52223         sw a4,4(a0)
  14: 00f52023         sw a5,0(a0)

• Machine language (in RISC-V)

• Online RISC-V Compiler:
• https://godbolt.org/

• Online RISC-V Assembler:
• https://riscvasm.lucasteske.dev/#

There is an error in FIGURE 1.4. Can you find it?

Compiler

Assembler

https://godbolt.org/
https://godbolt.org/
https://riscvasm.lucasteske.dev/
https://riscvasm.lucasteske.dev/


Input Device Inputs Machine Code
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0: 00259593         slli a1,a1,0x2
   4: 00b50533         add a0,a0,a1
   8: 00052703         lw a4,0(a0)
   c: 00452783         lw a5,4(a0)
  10: 00e52223         sw a4,4(a0)
  14: 00f52023         sw a5,0(a0)



Machine Code in Memory
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0: 00259593         slli a1,a1,0x2
   4: 00b50533         add a0,a0,a1
   8: 00052703         lw a4,0(a0)
   c: 00452783         lw a5,4(a0)
  10: 00e52223         sw a4,4(a0)
  14: 00f52023         sw a5,0(a0)



Control Fetches One Instruction
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0: 00259593         slli a1,a1,0x2
   4: 00b50533         add a0,a0,a1
   8: 00052703         lw a4,0(a0)
   c: 00452783         lw a5,4(a0)
  10: 00e52223         sw a4,4(a0)
  14: 00f52023         sw a5,0(a0)

00b50533



Decodes and Execute, and Fetch Again…
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0: 00259593         slli a1,a1,0x2
   4: 00b50533         add a0,a0,a1
   8: 00052703         lw a4,0(a0)
   c: 00452783         lw a5,4(a0)
  10: 00e52223         sw a4,4(a0)
  14: 00f52023         sw a5,0(a0)

0000000 01011 01010 000 01010 0110011

add a0,a0,a1

• Processor fetches the next instruction 
from memory

• How does it know which location in 
memory to fetch from next?



Write Outputs
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0: deadbeef



ISA – Bridge between HW and SW
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ISA and ABI

• ISA, or simply architecture – the abstract interface between the hardware and the lowest level 
software that includes all the information necessary to write a machine language program, 
including instructions, registers, memory access, I/O, ..

• Enables implementations of varying cost and performance to run identical software

• The combination of the basic instruction set (the ISA) and the operating system interface is 
called the application binary interface (ABI)

• ABI: The user portion of the instruction set plus the operating system interfaces used by 
application programmers. Defines a standard for binary portability across computers.
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Stored-Program Concept

• Everything is data, including the program.
• Programs are compiled to machine binary.

• Stored in memory and loaded into the processor for execution.

• Can be modified even during execution.

• This enables:
• Programs can be shipped as binary files – binary compatibility.

• Computers can inherit ready-made software provided they are compatible with existing 
ISA – leads the industry to align around a small number of ISAs.
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Assembly Language

• The language of the machine
• Want an ISA that makes it easy to build the hardware and the compiler while

• maximizing performance and minimizing cost

• Our targets: RISC-V ISA
• Like other ISAs developed since the 1980’s

• RISC-V is originated from MIPS, the latter of which is used by Broadcom, Cisco, NEC, 
Nintendo, Sony, ...

• Design Goals:
• Maximize performance, minimize cost, reduce design time (time-to-market), minimize 

memory space (embedded systems), minimize power consumption (mobile systems).
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CISC vs. RISC

• Complex Instruction Set Computer (CISC)
• Lots of complex instructions with variable length.

• Very memory optimal (when memory capacity was very limited).

• E.g., x86.

• Reduced Instruction Set Computer (RISC)
• Simple instructions of a fixed size. Usually called a load/store architecture.

• Simplify hardware design at cost of more instructions.

• E.g., Arm, MIPS, RISC-V, IBM PowerPC, …

• Today there is no clear boundary:
• x86 is decoded into micro-ops (similar to RISC instructions) before execution.

• RISC ISA introduces more complex instructions (e.g., matrix multiplication) for efficiency.
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History of MIPS

• Used in many embedded systems.
• E.g., Nintendo-64, PlayStation 1, PlayStation 2
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Welcome to RISC-V

• RISC-V
• An open standard instruction set architecture (ISA)

• A clean break from the earlier MIPS-inspired designs

• Modular ISA organization

• Open standards, numerous proprietary and open-source cores

• Managed by RISC-V Foundation
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RISC-V ISA I

• Instruction Categories:
• Arithmetic

• Data transfer

• Bitwise operation

• Control transfer

• Pseudo instruction

• 6 base instruction formats: all 32-bit wide:
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Registers

• Operands of arithmetic op must be a 
register (small but fast).

• RISC-V uses 32-bit registers.
• 32-bit is also called a word in RISC-V.

• Similarly, 64-bit is a doubleword.

• 32 registers (5-bit to encode).
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Registers
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• Which register cannot we store an operand when we call “max(a, b)”?
• A: x0 (zero)

• B: x3 (gp)

• C: x9 (s1)

• D: x11 (a1)

• Answer: A
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