CENG 3420

Computer Organization & Design
Lecture 02: ISA Introduction

Textbook: Chapter 1.3-1.4, 2.1-2.2
Zhengrong Wang

CSE Department, CUHK
zhengrongwang@cuhk.edu.hk

What is a Computer?

* Five components:

* Input (keyboard, mouse, etc.).
Output (display, printer). £ X
Memory (cache, main memory, disk, SSD). '
Datapath. 3 A
Control.

Computer

-
Datapath

| "h..

Processor

o

* Our primary focus:
* Datapath and control.

* Interaction with memory.
* Implemented with billions of transistors.

L ISP

S ahts

FIGURE 1.7 Components of the Apple iPhone XS Max cell phone. At the left is the capacitive multitouch
screen and LCD display. Next to it is the battery. To the far right is the metal frame that attaches the LCD to
the back of the iPhone. The small components in the center are what we think of as the computer; they are not
simple rectangles to fit compactly inside the case next to the battery. Figure 1.8 shows a close-up of the board
to the left of the metal case, which is the logic printed circuit board that contains the processor and memory.
(Courtesy Techlngishts, www.techIngishts.com)

pening the Box — Motherboard

Apple
338500456 PMIC

LA R R R R R R
R e T T)
UL L L L

-
o5 0w NN

a v venoew

L] u..
e -tl.l N unl l' ! (.

- [t s s et 852 e | Apple A12 APLIWS1 +
¢ : Micron MT53D512M64D4SB-046 XT:E
4GB Mobile LPDDR4x SDRAM

LR -
*

£y =

..
seaccoentlp

STMicroelectonics Apple
STB601A0 PMIC 338500375 PMIC

.‘o AI A"

o W Oonn‘

_'-3'\»

- oo vn-nx

se9sstesateeRsotsreeees ettt
R ETEEEE S b

,tl!f"ltti‘f!?:‘2!”2"!""'??"20

e W b l,.

M Ll A e Coronvdopencs
o e Y soson ‘donas

Tweemne

Texas Instruments Apple 338500411
SN2600B1 Audio Amplifier
Battery Charger

FIGURE 1.8 The logic board of Apple iPhone XS Max in Figure 1.7. The large integrated circuit in the middle is the Apple A12
chip, which contains two large and four small ARM processor cores that run at 2.5 GHz, as well as 2 GiB of main memory inside the
package. Figure 1.9 shows a photograph of the processor chip inside the A12 package. A similar-sized chip on a symmetric board
that attaches to the back is a 64 GiB flash memory chip for nonvolatile storage. The other chips on the board include the power
management integrated controller and audio amplifier chips. (Courtesy TechIngishts, www.techIngishts.com)

* Control needs to have circuitry to

Decide which is the next instruction.
Fetch instruction from memory.
Decode the instruction.

Issue and control it through the
datapath.

Control what operations the datapath
performs.

» Datapath needs to have circuitry to

Execute instructions — function units
(e.g., adder) and storage locations (e.g.,
registers).

Interconnect components so that

instructions can be executed as required.

Load and store data from memory.

|
System Cache 'J
4x Slices

CPU Complex
"1 L2 4x Banks

Small L2 Tech
Small Cores |l'l$l9ht$

FIGURE 1.9 The processor integrated circuit inside the A12 package. The size of chip is 8.4 by 9.91 mm,
and it was manufactured originally in a 7-nm process (see Section 1.5). It has two identical ARM processors
or cores in the lower middle of the chip, four small cores on the lower right of the chip, a graphics processing
unit (GPU) on the far right (see Section 6.6), and a domain-specific accelerator for neural networks (see
Section 6.7) called the NPU on the far left. In the middle are second-level cache memory (L2) banks for the
big and small cores (see Chapter 5). At the top and bottom of the chip are interfaces to the main memory
(DDR DRAM). (Courtesy TechInsights, www.techinsights.com)

System Software

* Operating System

* Supervising program that interfaces the user’'s program with the

hardware (e.g., Linux, iOS, Windows) \,,Latmn Soﬁw
* Handles basic input and output operations %@mﬁ Snm"e
* Allocates storage and memory &Y

* Provides for protected sharing among multiple applications

* Compiler ‘

| |
* Translate programs written in a high-level language(e.g., C, /
Java) into instructions that the hardware can execute /

System Software

Which one is not a task for an operating system?

A: output images to the screen.
B: create files.

C: translate C program to assembly language.
D: switch processes that run on the processor.

Answer: C

Advantages of High-Level Languages?

Allow the programmer to think in a more natural language and for their intended use (Fortran for
scientific computation, Cobol for business programming, Lisp for symbol manipulation, Java for web
programming, ...)

Improve programmer productivity — more understandable code that is easier to debug and validate
Improve program maintainability

Allow programs to be independent of the computer on which they are developed (compilers and
assemblers can translate high-level language programs to the binary instructions of any machine)

Emergence of optimizing compilers that produce very efficient assembly code optimized for the target
machine

Very little programming is done today at the assembler lever.

C Program

Traditional Compilation Flow

Assembly Language Program

Assembler

Machine Language

Library Route

Executable: Machine Language

Memory

Below the Program

High-level language program (in C) Online RISC-V Compiler:

void swap(int v[], int k) { https://godbolt.org/
int tmp; Online RISC-V Assembler:
tmp = v[k]; :
vik] = v[k + 1]; Compiler https://riscvasm.lucasteske.dev/#
vik + 1] = tmp;

}

Assembly language (in RISC-V) Machine language (in RISC-V)

swap(int*, int): @: 00259593 s1li al,al,ox2
slli al,al,2 4: ©0b50533 add a0,a0,al
add a0,a0,al Assembler 8: 00052703 lw a4,0(a0)
1w a4,0(ao) :> C: 00452783 lw a5,4(a0)
1w a5,4(ao0) 10: ©00e52223 sw a4,4(a0)
Sw a4,4(ao) 14: 00152023 sw a5,0(a0)
SW a5,0(a0)
ret

There is an error in FIGURE 1.4. Can you find it? 10

https://godbolt.org/
https://godbolt.org/
https://riscvasm.lucasteske.dev/
https://riscvasm.lucasteske.dev/

Computer

o

gy Datapath
nem
\ . \-

Processor

Memory

Input Device Inputs Machine Code

N 00~

00259593
00b50533
00052703
00452783
00e52223
00152023

slli al,al,ox2
add a@,a0,al
lw a4,0(a0)
lw a5,4(a0)
sw a4,4(a0)
sw a5,0(a0)

11

Machine Code in Memory

Computer

AN
Nn 0~

’ 10:
14:

00259593
00b50533
00052703
00452783
00e52223
00152023

slli al,al,0ox2
add a0,a0,al
lw a4,0(a0)
lw a5,4(a0)
sw a4,4(a0)
sw a5,0(a0)

,\;

-
Datapath

| m.

Processor

Computer

Processor

@: 00259593 slli al,al,ox2
4: ©0b50533 add a0,a0,al
8: 00052703 Iw a4,0(ao)
C: 00452783 lw a5,4(a0)
10: 00e52223 sw a4,4(a0)
14: 0052023 sw a5,0(a0)

13

Decodes and Execute, and Fetch Again...

s Q: 00259593 slli al,al,0Ox2
4: 00b50533 add a@,a0,al
8: 00052703 lw a4,0(aod)
,/ C: 00452783 lw a5,4(a0)
10: ©00e52223 sw a4,4(a0)
Computer - 14: 00152023 sw a5,0(a0)

* Processor fetches the next instruction

e e from memory
@g%@@@ 01011 @101l0 660 91016 @il@@lll * How does it know which location in

memory to fetch from next?

add ao, a@,al

Output

Processor

14

Processor

Write Outputs

Computer

0:

deadbeef

15

C Program

4 Applications A
[Game] [Browser] [Editor]

_ _ J
4 Operating System A
File
[Kernel] [System] [GUI]

_ _ J
4 Hardware A
[CPU] [GPU] [Memory]

_ J

Assembly Language Program

Machine Language

Instruction Set
Architecture

(ISA)

ISA — Bridge between HW and SW

Library Route

Executable: Machine Language

Memory

16

ISA and ABI

ISA, or simply architecture — the abstract interface between the hardware and the lowest level
software that includes all the information necessary to write a machine language program,
including instructions, registers, memory access, 1/0O, ..

Enables implementations of varying cost and performance to run identical software

The combination of the basic instruction set (the ISA) and the operating system interface is
called the application binary interface (ABI)

ABIl: The user portion of the instruction set plus the operating system interfaces used by
application programmers. Defines a standard for binary portability across computers.

17

Stored-Program Concept

Everything is data, including the program.

Programs are compiled to machine binary.
Stored in memory and loaded into the processor for execution.
Can be modified even during execution.

This enables:

Programs can be shipped as binary files — binary compatibility.

Computers can inherit ready-made software provided they are compatible with existing
ISA — leads the industry to align around a small number of ISAs.

18

Assembly Language

The language of the machine

Want an ISA that makes it easy to build the hardware and the compiler while
maximizing performance and minimizing cost

Our targets: RISC-V ISA

Like other ISAs developed since the 1980's

RISC-V is originated from MIPS, the latter of which is used by Broadcom, Cisco, NEC,
Nintendo, Sony, ...

Design Goals:

Maximize performance, minimize cost, reduce design time (time-to-market), minimize
memory space (embedded systems), minimize power consumption (mobile systems).

19

CISC vs. RISC

Complex Instruction Set Computer (CISC)
Lots of complex instructions with variable length.
Very memory optimal (when memory capacity was very limited).

E.g., x86.

Reduced Instruction Set Computer (RISC)

Simple instructions of a fixed size. Usually called a load/store architecture.

Simplify hardware design at cost of more instructions.
E.g., Arm, MIPS, RISC-V, IBM PowerP(C, ...

Today there is no clear boundary:

x86 is decoded into micro-ops (similar to RISC instructions) before execution.
RISC ISA introduces more complex instructions (e.g., matrix multiplication) for efficiency.

20

History of MIPS

* Used in many embedded systems.
* E.g., Nintendo-64, PlayStation 1, PlayStation 2

21

Welcome to RISC-V

RISC-V

An open standard instruction set architecture (ISA)
A clean break from the earlier MIPS-inspired designs
Modular ISA organization

Open standards, numerous proprietary and open-source cores
Managed by RISC-V Foundation

v RISC

®

22

* Instruction Categories:

* Arithmetic

Data transfer
Bitwise operation
Control transfer
Pseudo instruction

RISC-V ISA |

* 6 base instruction formats: all 32-bit wide:

27 26 25 24 20 19 15 14 12 7
funct?7 rs2 rsl funct3 rd opcode
imm/[11:0] rsl funct3 rd opcode
imm[11:5] rs2 rsl funct3 imm/[4:0] opcode
imm[12[10:5] rs2 rsl funct3 | imm[4:1|11] opcode
imm[31:12] rd opcode
imm[20(10:1(11]19:12] rd opcode

23

Registers

Operands of arithmetic op must be a
register (small but fast).

RISC-V uses 32-bit registers.
32-bit is also called a word in RISC-V.

Similarly, 64-bit is a doubleword.
32 registers (5-bit to encode).

Register | ABI Name | Description Saver
X0 zero Zero constant —

X1 ra Return address Caller
X2 sp Stack pointer —

X3 gp Global pointer —

x4 tp Thread pointer Callee
x5 to-t2 Temporaries Caller
x8 s / fp Saved / frame pointer | Callee
x9 s1 Saved register Callee
x10-x11 | a@-al Fn args/return values | Caller
x12-x17 | a2-a7 Fn args Caller
x18-x27 | s2-s11 Saved registers Callee
x28-x31 | t3-t6 Temporaries Caller
fo-7 fto-7 FP temporaries Caller
f8-9 fs0-1 FP saved registers Callee
f10-11 fao-1 FP args/return values | Caller
f12-17 fa2-7 FP args Caller
f18-27 fs2-11 FP saved registers Callee
f28-31 ft8-11 FP temporaries Caller

24

Registers

Which register cannot we store an operand when we call “max(a, b)"?
A: x0 (zero)

B: x3 (gp)
C: x9 (s1)
D: x11 (al)

Answer: A

25

	Default Section
	Slide 1: CENG 3420 Computer Organization & Design Lecture 02: ISA Introduction
	Slide 2: What is a Computer?
	Slide 3: Opening the Box – iPhone XS Max
	Slide 4: Opening the Box – Motherboard
	Slide 5: Processor Organization
	Slide 6: System Software
	Slide 7: System Software
	Slide 8: Advantages of High-Level Languages?
	Slide 9: Traditional Compilation Flow
	Slide 10: Below the Program
	Slide 11: Input Device Inputs Machine Code
	Slide 12: Machine Code in Memory
	Slide 13: Control Fetches One Instruction
	Slide 14: Decodes and Execute, and Fetch Again…
	Slide 15: Write Outputs
	Slide 16: ISA – Bridge between HW and SW
	Slide 17: ISA and ABI
	Slide 18: Stored-Program Concept
	Slide 19: Assembly Language
	Slide 20: CISC vs. RISC
	Slide 21: History of MIPS
	Slide 22: Welcome to RISC-V
	Slide 23: RISC-V ISA I
	Slide 24: Registers
	Slide 25: Registers

