
CENG 3420
Computer Organization & Design
Lecture 02: ISA Introduction
Textbook: Chapter 1.3-1.4, 2.1-2.2

Zhengrong Wang

CSE Department, CUHK

zhengrongwang@cuhk.edu.hk

1

What is a Computer?

• Five components:
• Input (keyboard, mouse, etc.).

• Output (display, printer).

• Memory (cache, main memory, disk, SSD).

• Datapath.

• Control.

• Our primary focus:
• Datapath and control.

• Interaction with memory.

• Implemented with billions of transistors.

2

Opening the Box – iPhone XS Max

3

Opening the Box – Motherboard

4

Processor Organization

5

• Control needs to have circuitry to
• Decide which is the next instruction.

• Fetch instruction from memory.

• Decode the instruction.

• Issue and control it through the
datapath.

• Control what operations the datapath
performs.

• Datapath needs to have circuitry to
• Execute instructions – function units

(e.g., adder) and storage locations (e.g.,
registers).

• Interconnect components so that
instructions can be executed as required.

• Load and store data from memory.

System Software

• Operating System
• Supervising program that interfaces the user’s program with the

hardware (e.g., Linux, iOS, Windows)

• Handles basic input and output operations

• Allocates storage and memory

• Provides for protected sharing among multiple applications

• Compiler
• Translate programs written in a high-level language(e.g., C,

Java) into instructions that the hardware can execute

6

System Software

• Which one is not a task for an operating system?
• A: output images to the screen.

• B: create files.

• C: translate C program to assembly language.

• D: switch processes that run on the processor.

• Answer: C

7

Advantages of High-Level Languages?

• Allow the programmer to think in a more natural language and for their intended use (Fortran for
scientific computation, Cobol for business programming, Lisp for symbol manipulation, Java for web
programming, ...)

• Improve programmer productivity – more understandable code that is easier to debug and validate

• Improve program maintainability

• Allow programs to be independent of the computer on which they are developed (compilers and
assemblers can translate high-level language programs to the binary instructions of any machine)

• Emergence of optimizing compilers that produce very efficient assembly code optimized for the target
machine

Very little programming is done today at the assembler lever.

8

Traditional Compilation Flow

9

C Program

Compiler

Assembly Language Program

Assembler

Machine Language

Linker

Library Route

Executable: Machine Language

Loader

Memory
…

Below the Program

• High-level language program (in C)

10

void swap(int v[], int k) {
 int tmp;
 tmp = v[k];
 v[k] = v[k + 1];
 v[k + 1] = tmp;
}

• Assembly language (in RISC-V)
swap(int*, int):
 slli a1,a1,2
 add a0,a0,a1
 lw a4,0(a0)
 lw a5,4(a0)
 sw a4,4(a0)
 sw a5,0(a0)
 ret

0: 00259593 slli a1,a1,0x2
 4: 00b50533 add a0,a0,a1
 8: 00052703 lw a4,0(a0)
 c: 00452783 lw a5,4(a0)
 10: 00e52223 sw a4,4(a0)
 14: 00f52023 sw a5,0(a0)

• Machine language (in RISC-V)

• Online RISC-V Compiler:
• https://godbolt.org/

• Online RISC-V Assembler:
• https://riscvasm.lucasteske.dev/#

There is an error in FIGURE 1.4. Can you find it?

Compiler

Assembler

https://godbolt.org/
https://godbolt.org/
https://riscvasm.lucasteske.dev/
https://riscvasm.lucasteske.dev/

Input Device Inputs Machine Code

11

0: 00259593 slli a1,a1,0x2
 4: 00b50533 add a0,a0,a1
 8: 00052703 lw a4,0(a0)
 c: 00452783 lw a5,4(a0)
 10: 00e52223 sw a4,4(a0)
 14: 00f52023 sw a5,0(a0)

Machine Code in Memory

12

0: 00259593 slli a1,a1,0x2
 4: 00b50533 add a0,a0,a1
 8: 00052703 lw a4,0(a0)
 c: 00452783 lw a5,4(a0)
 10: 00e52223 sw a4,4(a0)
 14: 00f52023 sw a5,0(a0)

Control Fetches One Instruction

13

0: 00259593 slli a1,a1,0x2
 4: 00b50533 add a0,a0,a1
 8: 00052703 lw a4,0(a0)
 c: 00452783 lw a5,4(a0)
 10: 00e52223 sw a4,4(a0)
 14: 00f52023 sw a5,0(a0)

00b50533

Decodes and Execute, and Fetch Again…

14

0: 00259593 slli a1,a1,0x2
 4: 00b50533 add a0,a0,a1
 8: 00052703 lw a4,0(a0)
 c: 00452783 lw a5,4(a0)
 10: 00e52223 sw a4,4(a0)
 14: 00f52023 sw a5,0(a0)

0000000 01011 01010 000 01010 0110011

add a0,a0,a1

• Processor fetches the next instruction
from memory

• How does it know which location in
memory to fetch from next?

Write Outputs

15

0: deadbeef

ISA – Bridge between HW and SW

16

Applications

Game Browser Editor

Operating System

Kernel
File

System
GUI

Hardware

CPU GPU Memory

Instruction Set
Architecture

(ISA)

16

C Program

Compiler

Assembly Language Program

Assembler

Machine Language

Linker

Library Route

Executable: Machine Language

Loader

Memory
…

ISA and ABI

• ISA, or simply architecture – the abstract interface between the hardware and the lowest level
software that includes all the information necessary to write a machine language program,
including instructions, registers, memory access, I/O, ..

• Enables implementations of varying cost and performance to run identical software

• The combination of the basic instruction set (the ISA) and the operating system interface is
called the application binary interface (ABI)

• ABI: The user portion of the instruction set plus the operating system interfaces used by
application programmers. Defines a standard for binary portability across computers.

17

Stored-Program Concept

• Everything is data, including the program.
• Programs are compiled to machine binary.

• Stored in memory and loaded into the processor for execution.

• Can be modified even during execution.

• This enables:
• Programs can be shipped as binary files – binary compatibility.

• Computers can inherit ready-made software provided they are compatible with existing
ISA – leads the industry to align around a small number of ISAs.

18

Assembly Language

• The language of the machine
• Want an ISA that makes it easy to build the hardware and the compiler while

• maximizing performance and minimizing cost

• Our targets: RISC-V ISA
• Like other ISAs developed since the 1980’s

• RISC-V is originated from MIPS, the latter of which is used by Broadcom, Cisco, NEC,
Nintendo, Sony, ...

• Design Goals:
• Maximize performance, minimize cost, reduce design time (time-to-market), minimize

memory space (embedded systems), minimize power consumption (mobile systems).

19

CISC vs. RISC

• Complex Instruction Set Computer (CISC)
• Lots of complex instructions with variable length.

• Very memory optimal (when memory capacity was very limited).

• E.g., x86.

• Reduced Instruction Set Computer (RISC)
• Simple instructions of a fixed size. Usually called a load/store architecture.

• Simplify hardware design at cost of more instructions.

• E.g., Arm, MIPS, RISC-V, IBM PowerPC, …

• Today there is no clear boundary:
• x86 is decoded into micro-ops (similar to RISC instructions) before execution.

• RISC ISA introduces more complex instructions (e.g., matrix multiplication) for efficiency.

20

History of MIPS

• Used in many embedded systems.
• E.g., Nintendo-64, PlayStation 1, PlayStation 2

21

Welcome to RISC-V

• RISC-V
• An open standard instruction set architecture (ISA)

• A clean break from the earlier MIPS-inspired designs

• Modular ISA organization

• Open standards, numerous proprietary and open-source cores

• Managed by RISC-V Foundation

22

RISC-V ISA I

• Instruction Categories:
• Arithmetic

• Data transfer

• Bitwise operation

• Control transfer

• Pseudo instruction

• 6 base instruction formats: all 32-bit wide:

23

Registers

• Operands of arithmetic op must be a
register (small but fast).

• RISC-V uses 32-bit registers.
• 32-bit is also called a word in RISC-V.

• Similarly, 64-bit is a doubleword.

• 32 registers (5-bit to encode).

24

Registers

25

• Which register cannot we store an operand when we call “max(a, b)”?
• A: x0 (zero)

• B: x3 (gp)

• C: x9 (s1)

• D: x11 (a1)

• Answer: A

	Default Section
	Slide 1: CENG 3420 Computer Organization & Design Lecture 02: ISA Introduction
	Slide 2: What is a Computer?
	Slide 3: Opening the Box – iPhone XS Max
	Slide 4: Opening the Box – Motherboard
	Slide 5: Processor Organization
	Slide 6: System Software
	Slide 7: System Software
	Slide 8: Advantages of High-Level Languages?
	Slide 9: Traditional Compilation Flow
	Slide 10: Below the Program
	Slide 11: Input Device Inputs Machine Code
	Slide 12: Machine Code in Memory
	Slide 13: Control Fetches One Instruction
	Slide 14: Decodes and Execute, and Fetch Again…
	Slide 15: Write Outputs
	Slide 16: ISA – Bridge between HW and SW
	Slide 17: ISA and ABI
	Slide 18: Stored-Program Concept
	Slide 19: Assembly Language
	Slide 20: CISC vs. RISC
	Slide 21: History of MIPS
	Slide 22: Welcome to RISC-V
	Slide 23: RISC-V ISA I
	Slide 24: Registers
	Slide 25: Registers

