CENG 3420

Computer Organization & Design

L ecture 03: Arithmetic Instructions

Textbook: Chapter 2.1-2.6
Zhengrong Wang

CSE Department, CUHK
zhengrongwang@cuhk.edu.hk

RISC-V Extensions

RISC-V allows/encourage extension for flexibility

Standard extensions:
| (Integer-related extension)
M (Standard integer multiply and divide extension)
A (Atomic extension)
F (Floating-point extension)
D (double-precision extension)
C (Compressed instruction extension, 16-bit instruction encoding)
G (General purpose extension, including IMAFD)

User / Supervisor / Machine level

In this course we focus on RV32lI.

Return address ra/x1
Before function calls, explicitly save the
return address in ra (usually pc + 4).
Stack pointer sp/x2

Points to the logical top of the stack
(which is to the lowest memory address,
since the stack grows downward).

Global pointer gp/x3
Holds the base address of the memory
region containing global variables.
Function arguments a0-a7/x10-x17
Holds the arguments of a function call.

Extra arguments (>8) are pushed into
the stack.

RV32l Unprivileged Integer Register

Register | ABI Name | Description Saver
X0 zero Zero constant —

X1 ra Return address Caller
X2 sp Stack pointer —

X3 gp Global pointer —

x4 tp Thread pointer Callee
x5 to-t2 Temporaries Caller
x8 s / fp Saved / frame pointer | Callee
x9 s1 Saved register Callee
x10-x11 | a@-al Fn args/return values | Caller
x12-x17 | a2-a7 Fn args Caller
x18-x27 | s2-s11 Saved registers Callee
x28-x31 | t3-t6 Temporaries Caller
fo-7 fto-7 FP temporaries Caller
f8-9 fs0-1 FP saved registers Callee
f10-11 fao-1 FP args/return values | Caller
f12-17 fa2-7 FP args Caller
f18-27 fs2-11 FP saved registers Callee
f28-31 ft8-11 FP temporaries Caller

3

Instruction Encoding

31 27 26 25 24 20 19 15 14 12 11 7
funct?7 rs2 rsl funct3 rd opcode
imm[11:0] rsl funct3 rd opcode
imm[11:5] rs2 rsl funct3 imm|[4:0] opcode
imm[12[10:5] rs2 rsl funct3 | imm[4:1|11] opcode
imm[31:12] rd opcode
imm[20]10:1(11]19:12] rd opcode

6 base instruction formats: all 32-bit wide:
opcode: 7-bit, specifies the operation.

B/S and U/J only differs in the immediate number encoding.

rs1: 5-bit, register file address of the first source operand.
rs2: 5-bit, register file address of the second source operand.

rd: 5-bit, register file address of the destination.
imm: 12-bit or 20-bit, immediate number field.
funct: 3-bit or 10-bit, function code augmenting the opcode.

Arithmetic Instructions

* R-type: all three operands are from registers.

Assembly: add x1, x2, x3

Hexadecimal: ©03100B3

Binary: 0000 0000 0011 00Ol 0000 0000 1011 0011
Decode: 000000 00011 00010 000 00001 0110011
Field: funct?7 rs2 rsl funct3 rd opcode

* Semantic: destination = sourcel op source2

Intermediate Instructions

Small constants are often used in typical assembly code directly.

But all operands of arithmetic operations are registers.
Possible approaches:

Put them in memory and load into registers.

Special registers to contain specific values (e.g., zero holds constant 0).
Directly encode constant number in the instruction as immediate.

I-type instructions:

Assembly: addi x1, x2,

Hexadecimal: 06410093

Binary: 0000 0110 0100 0001 0O 0000 1001 0011
Decode: 00010 000 00001 0010011

Field: rsl funct3 rd opcode

Intermediate Instructions

What if the constant is beyond the 12-bit range? E.g., 32-bit immediate?
Two instructions:

lui to load the upper 20-bit and zero lower 12-bit. (U-type)

Assembly: lui x1,

Hexadecimal: 123450b7

Binary: 0001 0010 0011 0100 0101 0000 1011 0111

Decode: 00001 011011

Field: rd opcode
ori to set the lower 12-bit. (I-type)

Assembly: ori x1, x1,

Hexadecimal: 6780e093

Binary: 0110 0111 1000 0000 1110 0000 1001 0011

Decode: 00001 110 00001 0010011

Field: rsl funct3 rd opcode

%ﬁ Shift Instructions

¥ I'-_p

Logic shift left/right instruction.

sll
srl

slli
srli

Shift Left Logical
Shift Right Logical

Shift Left Logical Imm

Shift Right Logical Imm

R
R

[

0110011
0110011

0010011
0010011

Ox1
0x5

0x1
Ox5

0x00
0x00

imm[5:11]=0x00
imm[5:11]=0x00

rd
rd

rd
rd

Note the 5-bit shift amount can represent up to 2°5 — 1 = 31 bits

Logical shift fills with zeros.

rsl << rs2
rsl >> rs2

rsl << imm[0:4]
rs1 >> imm[0:4]

positions.

Arithmetic shift right (sra, srai) will replicate the most-significant bit (MSB).
E.g., 0xE1234567 >> 4 = OxFE123456 (Fill with ones).
E.g., 0x71234567 >> 4 = 0x07123456 (Fill with zeros).
This is to keep the sign of signed integer type (e.g., int).

Arithmetic shift left always fill zeros (there is no sla/slai instruction).

Bitwise Logical Instructions

Bitwise and/or/xor instruction.

A

xor XOR R 0110011 | Ox4 0x00 rd = rsi rs2
or OR R 0110011 0x6 0x00 rd = rs1 | rs2
and AND R 0110011 Ox7 0x00 rd = rs1 & rs2
How to do negate (7x)?
The “not™ instruction is a pseudo-instruction, not a real instruction.
So, what is this “not" instruction?
int negate(int v) { Assembly: not a@, a0
return ~v; Hexadecimal: fff54513
} Binary: 1111 1111 1111 90101 0100 0101 0001 0011
Decode: 01010 100 01010 0010011
negate(int): Real Inst: xori a@, a0,
not ad, ad

ret

Bitwise and/or/xor instruction.

inst | operation encoding | opcode funct3 | description (C)
1w load word (32-bit) I-type 0000011 | Ox2 rd = M[rsl+imm][0:31]
SW store word (32-bit) | S-type 0100011 | ox2 M[rsl+imm][©:31] = rs2

The data is loaded into (lw) or stored from (sw) a register in the register file — a 5 bit
address.

The memory address — a 32-bit address — is formed by adding the contents of the base
address register to the offset value.

A 12-bit field in RV32l meaning access is limited to memory locations within a region
from —2 KB to 2 KB of the address in the base register.

Assembly: lw x1, 8(x2) Suppose x2 = 0x100
Hexadecimal: 00812083 Load Mem[6x108] into x1
Binary: 0000 00O 1000 0001 0010 VOO 1000 0011

Decode: 00010 010 00001 0000011

Field: rsl funct3 rd opcode
10

Byte Address

Since 8-bit bytes are so useful, most architectures address individual bytes in
memory.

Alignment restriction — the memory address of a word must be on natural
word boundaries (a multiple of 4 in RV32l).

Big endian: most significant byte placed in lower address.
IBM 360/370, MIPS, SPARC.

Little endian: least significant byte placed in lower address.
RISC-V, x86, ARM (default little endian, can be configured as big endian).

Memory Address: | ox100 | ox101 | ox1e2 | ex1e3 |
Little endian (value=0x01234567) | @x67 | ox45 | ox23 | exo1l |
Bit endian (value=0x01234567) | ox01 | ox23 | ox45 | ox67 |

Why modern architectures prefer little endian?
Easier for type casting — e.g., int* — char* -- does not need to shift the address.

11

Byte Transfer Instruction

RISC-V provides Ib/sb instruction to directly load/store one byte.

Into the lower 8-bit of rd, leaving other bits unchanged.

Example: Given the following code sequence and memory state:
What is the content of t0 after the load?
What word in memory is changed? To what value?
What if the system is big-endian?

Code: Memory :
add s3, zero, zero Ox8: 01 00 04 02
b te, 1(s3) Ox4: FF FF FF FF

sb t0, 6(s3) Ox0: 00 90 12 A®

12

	Default Section
	Slide 1: CENG 3420 Computer Organization & Design Lecture 03: Arithmetic Instructions
	Slide 2: RISC-V Extensions
	Slide 3: RV32I Unprivileged Integer Register
	Slide 4: Instruction Encoding
	Slide 5: Arithmetic Instructions
	Slide 6: Intermediate Instructions
	Slide 7: Intermediate Instructions
	Slide 8: Shift Instructions
	Slide 9: Bitwise Logical Instructions
	Slide 10: Data Transfer Instructions
	Slide 11: Byte Address
	Slide 12: Byte Transfer Instruction

