
CENG 3420
Computer Organization & Design
Lecture 03: Arithmetic Instructions
Textbook: Chapter 2.1-2.6

Zhengrong Wang

CSE Department, CUHK

zhengrongwang@cuhk.edu.hk

1

RISC-V Extensions

• RISC-V allows/encourage extension for flexibility

• Standard extensions:
• I (Integer-related extension)

• M (Standard integer multiply and divide extension)

• A (Atomic extension)

• F (Floating-point extension)

• D (double-precision extension)

• C (Compressed instruction extension, 16-bit instruction encoding)

• G (General purpose extension, including IMAFD)

• User / Supervisor / Machine level

• In this course we focus on RV32I.

2

RV32I Unprivileged Integer Register

• Return address ra/x1
• Before function calls, explicitly save the

return address in ra (usually pc + 4).

• Stack pointer sp/x2
• Points to the logical top of the stack

(which is to the lowest memory address,
since the stack grows downward).

• Global pointer gp/x3
• Holds the base address of the memory

region containing global variables.

• Function arguments a0-a7/x10-x17
• Holds the arguments of a function call.

• Extra arguments (>8) are pushed into
the stack.

3

Instruction Encoding

• 6 base instruction formats: all 32-bit wide:
• opcode: 7-bit, specifies the operation.

• rs1: 5-bit, register file address of the first source operand.

• rs2: 5-bit, register file address of the second source operand.

• rd: 5-bit, register file address of the destination.

• imm: 12-bit or 20-bit, immediate number field.

• funct: 3-bit or 10-bit, function code augmenting the opcode.

• B/S and U/J only differs in the immediate number encoding.

4

Arithmetic Instructions

• R-type: all three operands are from registers.

• Semantic: destination = source1 op source2

5

Assembly: add x1, x2, x3
Hexadecimal: 003100B3
Binary: 0000 0000 0011 0001 0000 0000 1011 0011
Decode: 0000000 00011 00010 000 00001 0110011
Field: funct7 rs2 rs1 funct3 rd opcode

Intermediate Instructions

• Small constants are often used in typical assembly code directly.

• But all operands of arithmetic operations are registers.

• Possible approaches:
• Put them in memory and load into registers.

• Special registers to contain specific values (e.g., zero holds constant 0).

• Directly encode constant number in the instruction as immediate.

• I-type instructions:

6

Assembly: addi x1, x2, 100
Hexadecimal: 06410093
Binary: 0000 0110 0100 0001 0000 0000 1001 0011
Decode: 000001100100 00010 000 00001 0010011
Field: imm 64+32+4=100 rs1 funct3 rd opcode

Intermediate Instructions

• What if the constant is beyond the 12-bit range? E.g., 32-bit immediate?

• Two instructions:

• lui to load the upper 20-bit and zero lower 12-bit. (U-type)

• ori to set the lower 12-bit. (I-type)

7

Assembly: lui x1, 0x12345
Hexadecimal: 123450b7
Binary: 0001 0010 0011 0100 0101 0000 1011 0111
Decode: 00010010001101000101 00001 011011
Field: imm 0x12345 rd opcode

Assembly: ori x1, x1, 0x678
Hexadecimal: 6780e093
Binary: 0110 0111 1000 0000 1110 0000 1001 0011
Decode: 011001111000 00001 110 00001 0010011
Field: imm 0x678 rs1 funct3 rd opcode

Shift Instructions

• Logic shift left/right instruction.

• Note the 5-bit shift amount can represent up to 2^5 – 1 = 31 bits positions.

• Logical shift fills with zeros.

• Arithmetic shift right (sra, srai) will replicate the most-significant bit (MSB).
• E.g., 0xE1234567 >> 4 = 0xFE123456 (Fill with ones).

• E.g., 0x71234567 >> 4 = 0x07123456 (Fill with zeros).

• This is to keep the sign of signed integer type (e.g., int).

• Arithmetic shift left always fill zeros (there is no sla/slai instruction).

8

Bitwise Logical Instructions

• Bitwise and/or/xor instruction.

• How to do negate (~x)?
• The `not` instruction is a pseudo-instruction, not a real instruction.

• So, what is this `not` instruction?

9

int negate(int v) {
 return ~v;
}

negate(int):
 not a0,a0
 ret

Assembly: not a0, a0
Hexadecimal: fff54513
Binary: 1111 1111 1111 0101 0100 0101 0001 0011
Decode: 111111111111 01010 100 01010 0010011
Real Inst: xori a0, a0, 0xFFF (Sign extended to 0xFFFFFFFF)

Data Transfer Instructions

• Bitwise and/or/xor instruction.

• The data is loaded into (lw) or stored from (sw) a register in the register file – a 5 bit
address.

• The memory address – a 32-bit address – is formed by adding the contents of the base
address register to the offset value.

• A 12-bit field in RV32I meaning access is limited to memory locations within a region
from −2 KB to 2 KB of the address in the base register.

10

| inst | operation | encoding | opcode | funct3 | description (C) |

| lw | load word (32-bit) | I-type | 0000011 | 0x2 | rd = M[rs1+imm][0:31] |
| sw | store word (32-bit) | S-type | 0100011 | 0x2 | M[rs1+imm][0:31] = rs2 |

Assembly: lw x1, 8(x2)
Hexadecimal: 00812083
Binary: 0000 0000 1000 0001 0010 0000 1000 0011
Decode: 000000001000 00010 010 00001 0000011
Field: imm 8 rs1 funct3 rd opcode

Suppose x2 = 0x100
Load Mem[0x108] into x1

Byte Address

• Since 8-bit bytes are so useful, most architectures address individual bytes in
memory.

• Alignment restriction – the memory address of a word must be on natural
word boundaries (a multiple of 4 in RV32I).

• Big endian: most significant byte placed in lower address.
• IBM 360/370, MIPS, SPARC.

• Little endian: least significant byte placed in lower address.
• RISC-V, x86, ARM (default little endian, can be configured as big endian).

• Why modern architectures prefer little endian?
• Easier for type casting – e.g., int* → char* -- does not need to shift the address.

11

Memory Address: | 0x100 | 0x101 | 0x102 | 0x103 |
Little endian (value=0x01234567) | 0x67 | 0x45 | 0x23 | 0x01 |
Bit endian (value=0x01234567) | 0x01 | 0x23 | 0x45 | 0x67 |

Byte Transfer Instruction

• RISC-V provides lb/sb instruction to directly load/store one byte.

• Into the lower 8-bit of rd, leaving other bits unchanged.

• Example: Given the following code sequence and memory state:
• What is the content of t0 after the load?

• What word in memory is changed? To what value?

• What if the system is big-endian?

12

Code:
add s3, zero, zero
lb t0, 1(s3)
sb t0, 6(s3)

Memory:
0x8: 01 00 04 02
0x4: FF FF FF FF
0x0: 00 90 12 A0

	Default Section
	Slide 1: CENG 3420 Computer Organization & Design Lecture 03: Arithmetic Instructions
	Slide 2: RISC-V Extensions
	Slide 3: RV32I Unprivileged Integer Register
	Slide 4: Instruction Encoding
	Slide 5: Arithmetic Instructions
	Slide 6: Intermediate Instructions
	Slide 7: Intermediate Instructions
	Slide 8: Shift Instructions
	Slide 9: Bitwise Logical Instructions
	Slide 10: Data Transfer Instructions
	Slide 11: Byte Address
	Slide 12: Byte Transfer Instruction

