
CENG 3420
Computer Organization & Design
Lecture 04: Binary Number
Textbook: Chapter 2.4

Zhengrong Wang

CSE Department, CUHK

zhengrongwang@cuhk.edu.hk

1

Binary Number

2

Recap

• Arithmetic instructions to perform computation on registers.
• E.g., add x1, x2, x3.

• Memory instructions to move value between registers and memory.
• E.g., lw x1, 4(x2).

• But how does the computer perform the actual computation?
• How to do 2 + 3?

• What about 2.3 + 3.4?

3

Representation of Natural Number

• A natural number N can be written as M digits (𝑑𝑖) in some base B:

𝑁 = 𝑑𝑀−1𝑑𝑀−2…𝑑1𝑑0 𝐵

= 𝑑𝑀−1 × 𝐵
𝑀−1 + 𝑑𝑀−2 × 𝐵

𝑀−2 +⋯+ 𝑑1 × 𝐵 + 𝑑0

=෍
0

𝑀−1

𝑑𝑖 × 𝐵
𝑖

• E.g., we have 10 fingers → naturally base 10
123410 = 1 × 103 + 2 × 102 + 3 × 101 + 4

• E.g., computer uses electronic signal (high/low voltage means 1/0) → base 2
10112 = 1 × 23 + 0 × 22 + 1 × 21 + 1 = 1110

• E.g., For human readability, we often use base 16
𝑏𝑒𝑒𝑓16 = 11 × 163 + 14 × 162 + 14 × 161 + 15 = 4887910

4

Common Numerical System

• Some interesting numerical systems:
• Traditional Chinese weight used base-16. E.g.
半斤八两. (Why?)

• Mayan used base-20.

• Ancient Babylonians used base-60 (still used in
our time system, e.g. 60 seconds for 1 minute).

• Yuki people (California) used base-8 (spaces
between fingers).

• Soviet Union developed ternary computers
(three values, -1, 0, 1).

• The choice of numerical base reflects the nature of
the system.

• Digital computers operate using binary logic.

5

+---------+--------+-------+------------+
| Decimal | Binary | Octal | Hexadecimal|
| (10) | (2) | (8) | (16) |
+---------+--------+-------+------------+
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
+---------+--------+-------+------------+

32-bit Unsigned Integers

• RV32-I uses 32-bit unsigned integers, with range 0, 232 − 1

• Right-most bit is least significant bit (LSB).

• Left-most bit is most significant bit (MSB).

6

+------------------------+----------------------------------+
| Unsigned Decimal Value | 32-bit Binary Representation |
+------------------------+----------------------------------+
0	00000000000000000000000000000000
1	00000000000000000000000000000001
...	...
4294967295 (2^32−1)	11111111111111111111111111111111
+------------------------+----------------------------------+

32-bit Signed Integers

• We use two’s complement to represent signed integers.
• MSB = 0 → Non-negative number follows normal representation.

• MSB = 1 → Negative number, the magnitude from two’s complement.

• Convert between negative and positive number: Invert, then add one.
• 2 = 0010 → Invert 1101 → Add one 1110 = -2

• -2 = 1110 → Invert 0001 → Add one 0010 = 2

7

+----------------------------+----------------------------------+
| Signed Decimal Value | 32-bit Binary Representation |
+----------------------------+----------------------------------+
-2,147,483,648 (−2^31)	10000000000000000000000000000000
-2,147,483,647	10000000000000000000000000000001
...	...
0	00000000000000000000000000000000
1	00000000000000000000000000000001
...	...
2,147,483,647 (2^31 − 1)	01111111111111111111111111111111
+----------------------------+----------------------------------+

• Range −231, 231 − 1

• Note the asymmetry.

Why Two’s Complement

• All modern processor uses two’s complement for signed integers.

• In two’s complement, −𝑥 = 2𝑛 − 𝑥
• E.g., 5 = 01012, −5 = 24 − 5 = 16 − 5 = 11 = 10112

• This unifies addition for signed and unsigned integers!
• Since we drop the overflow bit, addition is modulo 2𝑛

• E.g., 8 − 5 = 10002 + 10112 = 100112 = 00112 = 3

• For addition, simply treat everything unsigned.

8

Signed and Unsigned Extension

• To extend a n-bit integer to m-bit integer (m > n).

• Signed extension: Duplicate the most significant bit (MSB), i.e. the sign bit.
• Keep the sign unchanged!

• Unsigned extension: Fill with 0.

• Exercise: check that after signed extension, -4 is still -4.

• Exercise: what is the final value of 4-bit 8u signed extended into 8-bit?

9

+----------------+----------------+----------------+----------------+
| 4-bit Decimal | 4-bit Binary | 8-bit Binary | 8-bit Decimal |
+----------------+----------------+----------------+----------------+
| 4 | 0100 | 00000100 | 4 |
| -4 | 1100 (2's comp)| 11111100 | -4 |
+----------------+----------------+----------------+----------------+

Conversion for Decimal Number

• Step 1: Divide the decimal number by the base.

• Step 2: Save the remainder (first remainder is the least significant digit).

• Repeat steps 1 and 2 until the quotient is zero.

• Result is in reverse order of remainders

• EX1: Convert 368 to binary value.

• EX2: Convert 3610 to binary value.

• EX3: Convert −610 to binary value.

10

Addition and Subtraction

• Just like in primary school (carry & borrow 1s)

• Two’s complement operations are easy: do subtraction by negating then adding.

• Overflow (result too large for finite computer word).

11

0111 0111 0110
+ 0110 - 0110 - 0101
------- ------- -------

0111 0111
- 0110 -> + 1010
------- -------

0111
+ 1110

Logical Gates (Optional)

12

Transistors to Logical Gates

• Transistor:
• Voltage on Gate controls conductivity between Source and Drain.

• You can implement logical gates with transistors.
• Can you implement AND gate with transistors?

13

BUFFER

NOT

AND

OR XNOR

NAND

NOR

XOR
NOT w. MOSFET

Truth Table

• A means for describing how a logic circuit’s output depends on the logic levels
present at the circuit’s inputs.

• The number of input combinations will equal 2𝑁 for an N-input truth table.
• Determine the true table of a three-input AND gate.

14

XOR Truth Table of Q=XOR(A, B)
+-------+-------+--------+
| A | B | Q |
+-------+-------+--------+
0	0	0
0	1	1
1	0	1
1	1	0
+-------+-------+--------+

	Default Section
	Slide 1: CENG 3420 Computer Organization & Design Lecture 04: Binary Number

	Binary Number
	Slide 2: Binary Number
	Slide 3: Recap
	Slide 4: Representation of Natural Number
	Slide 5: Common Numerical System
	Slide 6: 32-bit Unsigned Integers
	Slide 7: 32-bit Signed Integers
	Slide 8: Why Two’s Complement
	Slide 9: Signed and Unsigned Extension
	Slide 10: Conversion for Decimal Number
	Slide 11: Addition and Subtraction

	Logical Gates
	Slide 12: Logical Gates (Optional)
	Slide 13: Transistors to Logical Gates
	Slide 14: Truth Table

