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Binary Number
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Recap

• Arithmetic instructions to perform computation on registers.
• E.g., add x1, x2, x3.

• Memory instructions to move value between registers and memory.
• E.g., lw x1, 4(x2).

• But how does the computer perform the actual computation?
• How to do 2 + 3?

• What about 2.3 + 3.4?
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Representation of Natural Number

• A natural number N can be written as M digits (𝑑𝑖) in some base B:

𝑁 = 𝑑𝑀−1𝑑𝑀−2…𝑑1𝑑0 𝐵

= 𝑑𝑀−1 × 𝐵
𝑀−1 + 𝑑𝑀−2 × 𝐵

𝑀−2 +⋯+ 𝑑1 × 𝐵 + 𝑑0

=෍
0

𝑀−1

𝑑𝑖 × 𝐵
𝑖

• E.g., we have 10 fingers → naturally base 10
123410 = 1 × 103 + 2 × 102 + 3 × 101 + 4

• E.g., computer uses electronic signal (high/low voltage means 1/0) → base 2
10112 = 1 × 23 + 0 × 22 + 1 × 21 + 1 = 1110

• E.g., For human readability, we often use base 16
𝑏𝑒𝑒𝑓16 = 11 × 163 + 14 × 162 + 14 × 161 + 15 = 4887910
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Common Numerical System

• Some interesting numerical systems:
• Traditional Chinese weight used base-16. E.g. 
半斤八两. (Why?)

• Mayan used base-20.

• Ancient Babylonians used base-60 (still used in 
our time system, e.g. 60 seconds for 1 minute).

• Yuki people (California) used base-8 (spaces 
between fingers).

• Soviet Union developed ternary computers 
(three values, -1, 0, 1).

• The choice of numerical base reflects the nature of 
the system.

• Digital computers operate using binary logic.
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+---------+--------+-------+------------+
| Decimal | Binary | Octal | Hexadecimal|
|  (10)   |  (2)   |  (8)  |    (16)    |
+---------+--------+-------+------------+
|   0     |  0000  |   0   |     0      |
|   1     |  0001  |   1   |     1      |
|   2     |  0010  |   2   |     2      |
|   3     |  0011  |   3   |     3      |
|   4     |  0100  |   4   |     4      |
|   5     |  0101  |   5   |     5      |
|   6     |  0110  |   6   |     6      |
|   7     |  0111  |   7   |     7      |
|   8     |  1000  |  10   |     8      |
|   9     |  1001  |  11   |     9      |
|  10     |  1010  |  12   |     A      |
|  11     |  1011  |  13   |     B      |
|  12     |  1100  |  14   |     C      |
|  13     |  1101  |  15   |     D      |
|  14     |  1110  |  16   |     E      |
|  15     |  1111  |  17   |     F      |
|  16     | 10000  |  20   |    10      |
+---------+--------+-------+------------+



32-bit Unsigned Integers

• RV32-I uses 32-bit unsigned integers, with range 0, 232 − 1

• Right-most bit is least significant bit (LSB).

• Left-most bit is most significant bit (MSB).
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+------------------------+----------------------------------+
| Unsigned Decimal Value | 32-bit Binary Representation     |
+------------------------+----------------------------------+
| 0                      | 00000000000000000000000000000000 |
| 1                      | 00000000000000000000000000000001 |
| ...                    | ...                              |
| 4294967295 (2^32−1)    | 11111111111111111111111111111111 |
+------------------------+----------------------------------+



32-bit Signed Integers

• We use two’s complement to represent signed integers.
• MSB = 0 → Non-negative number follows normal representation.

• MSB = 1 → Negative number, the magnitude from two’s complement.

• Convert between negative and positive number: Invert, then add one.
• 2 = 0010 → Invert 1101 → Add one 1110 = -2

• -2 = 1110 → Invert 0001 → Add one 0010 = 2
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+----------------------------+----------------------------------+
| Signed Decimal Value       | 32-bit Binary Representation     |
+----------------------------+----------------------------------+
| -2,147,483,648 (−2^31)     | 10000000000000000000000000000000 |
| -2,147,483,647             | 10000000000000000000000000000001 |
| ...                        | ...                              |
| 0                          | 00000000000000000000000000000000 |
| 1                          | 00000000000000000000000000000001 |
| ...                        | ...                              |
| 2,147,483,647 (2^31 − 1)   | 01111111111111111111111111111111 |
+----------------------------+----------------------------------+

• Range −231, 231 − 1

• Note the asymmetry.



Why Two’s Complement

• All modern processor uses two’s complement for signed integers.

• In two’s complement, −𝑥 = 2𝑛 − 𝑥
• E.g., 5 = 01012, −5 = 24 − 5 = 16 − 5 = 11 = 10112

• This unifies addition for signed and unsigned integers!
• Since we drop the overflow bit, addition is modulo 2𝑛

• E.g., 8 − 5 = 10002 + 10112 = 100112 = 00112 = 3

• For addition, simply treat everything unsigned.
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Signed and Unsigned Extension

• To extend a n-bit integer to m-bit integer (m > n).

• Signed extension: Duplicate the most significant bit (MSB), i.e. the sign bit.
• Keep the sign unchanged!

• Unsigned extension: Fill with 0.

• Exercise: check that after signed extension, -4 is still -4.

• Exercise: what is the final value of 4-bit 8u signed extended into 8-bit?
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+----------------+----------------+----------------+----------------+
| 4-bit Decimal  | 4-bit Binary   | 8-bit Binary   | 8-bit Decimal  |
+----------------+----------------+----------------+----------------+
| 4              | 0100           | 00000100       | 4              |
| -4             | 1100 (2's comp)| 11111100       | -4             |
+----------------+----------------+----------------+----------------+



Conversion for Decimal Number

• Step 1: Divide the decimal number by the base.

• Step 2: Save the remainder (first remainder is the least significant digit).

• Repeat steps 1 and 2 until the quotient is zero.

• Result is in reverse order of remainders

• EX1: Convert 368 to binary value.

• EX2: Convert 3610 to binary value.

• EX3: Convert −610 to binary value.
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Addition and Subtraction

• Just like in primary school (carry & borrow 1s)

• Two’s complement operations are easy: do subtraction by negating then adding.

• Overflow (result too large for finite computer word).
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0111          0111          0110
+ 0110        - 0110        - 0101
-------       -------       -------

0111          0111        
- 0110   ->   + 1010       
-------       -------

0111
+ 1110
-------



Logical Gates (Optional)
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Transistors to Logical Gates

• Transistor:
• Voltage on Gate controls conductivity between Source and Drain.

• You can implement logical gates with transistors.
• Can you implement AND gate with transistors?
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Truth Table

• A means for describing how a logic circuit’s output depends on the logic levels 
present at the circuit’s inputs.

• The number of input combinations will equal 2𝑁 for an N-input truth table.
• Determine the true table of a three-input AND gate.
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XOR Truth Table of Q=XOR(A, B)
+-------+-------+--------+
|   A   |   B   |   Q    |
+-------+-------+--------+
|   0   |   0   |   0    |
|   0   |   1   |   1    |
|   1   |   0   |   1    |
|   1   |   1   |   0    |
+-------+-------+--------+
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