

CENG 3420

Computer Organization & Design

Lecture 04: Binary Number

Textbook: Chapter 2.4

Zhengrong Wang

CSE Department, CUHK

zhengrongwang@cuhk.edu.hk

Binary Number

Recap

- Arithmetic instructions to perform computation on **registers**.
 - E.g., $\text{add } x_1, x_2, x_3$.
- Memory instructions to move value between registers and **memory**.
 - E.g., $\text{lw } x_1, 4(x_2)$.
- But how does the computer perform the actual **computation**?
 - How to do $2 + 3$?
 - What about $2.3 + 3.4$?

Representation of Natural Number

- A natural number N can be written as **M digits (d_i)** in some **base B**:

$$\begin{aligned}N &= (d_{M-1}d_{M-2} \dots d_1d_0)_B \\&= d_{M-1} \times B^{M-1} + d_{M-2} \times B^{M-2} + \dots + d_1 \times B + d_0 \\&= \sum_0^{M-1} d_i \times B^i\end{aligned}$$

- E.g., we have 10 fingers \rightarrow naturally **base 10**

$$1234_{10} = 1 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 4$$

- E.g., computer uses electronic signal (high/low voltage means 1/0) \rightarrow **base 2**

$$1011_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 = 11_{10}$$

- E.g., For human readability, we often use **base 16**

$$beef_{16} = 11 \times 16^3 + 14 \times 16^2 + 14 \times 16^1 + 15 = 48879_{10}$$

Common Numerical System

Decimal (10)	Binary (2)	Octal (8)	Hexadecimal (16)
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

- Some interesting numerical systems:
 - Traditional Chinese weight used base-16. E.g. **半斤八两. (Why?)**
 - Mayan used base-20.
 - Ancient Babylonians used base-60 (still used in our time system, e.g. 60 seconds for 1 minute).
 - Yuki people (California) used base-8 (spaces between fingers).
 - Soviet Union developed ternary computers (three values, -1, 0, 1).
- The choice of numerical base reflects the nature of the system.
- Digital computers operate using binary logic.

32-bit Unsigned Integers

- RV32-I uses 32-bit **unsigned** integers, with range $[0, 2^{32} - 1]$

Unsigned Decimal Value	32-bit Binary Representation
0	00000000000000000000000000000000
1	00000000000000000000000000000001
...	...
4294967295 ($2^{32}-1$)	11111111111111111111111111111111

- Right-most bit is least significant bit (**LSB**).
- Left-most bit is most significant bit (**MSB**).

32-bit Signed Integers

- We use two's complement to represent signed integers.
 - MSB = 0 → Non-negative number follows normal representation.
 - MSB = 1 → Negative number, the magnitude from two's complement.
- Convert between negative and positive number: **Invert, then add one.**
 - $2 = 0010 \rightarrow \text{Invert } 1101 \rightarrow \text{Add one } 1110 = -2$
 - $-2 = 1110 \rightarrow \text{Invert } 0001 \rightarrow \text{Add one } 0010 = 2$

Signed Decimal Value	32-bit Binary Representation
$-2,147,483,648 (-2^{31})$	10000000000000000000000000000000
$-2,147,483,647$	10000000000000000000000000000001
...	...
0	00000000000000000000000000000000
1	00000000000000000000000000000001
...	...
$2,147,483,647 (2^{31} - 1)$	01111111111111111111111111111111

- Range $[-2^{31}, 2^{31} - 1]$
- Note the asymmetry.

Why Two's Complement

- All modern processor uses two's complement for signed integers.
- In two's complement, $-x = 2^n - x$
 - E.g., $5 = 0101_2, -5 = 2^4 - 5 = 16 - 5 = 11 = 1011_2$
- This **unifies** addition for signed and unsigned integers!
 - Since we drop the overflow bit, addition is **modulo 2^n**
 - E.g., $8 - 5 = 1000_2 + 1011_2 = 10011_2 = 0011_2 = 3$
 - For addition, simply treat everything **unsigned**.

Signed and Unsigned Extension

- To extend a n-bit integer to m-bit integer ($m > n$).
 - Signed extension: Duplicate the most significant bit (MSB), i.e. the sign bit.
 - Keep the sign unchanged!
 - Unsigned extension: Fill with 0.
-
- Exercise: check that after signed extension, -4 is still -4.
 - Exercise: what is the final value of 4-bit 8u signed extended into 8-bit?

4-bit Decimal	4-bit Binary	8-bit Binary	8-bit Decimal
4	0100	00000100	4
-4	1100 (2's comp)	11111100	-4

Conversion for Decimal Number

- Step 1: Divide the decimal number by the base.
 - Step 2: Save the remainder (first remainder is the least significant digit).
 - Repeat steps 1 and 2 until the quotient is zero.
 - Result is in reverse order of remainders
-
- EX1: Convert 36_8 to binary value.
 - EX2: Convert 36_{10} to binary value.
 - EX3: Convert -6_{10} to binary value.

Addition and Subtraction

- Just like in primary school (carry & borrow 1s)

$$\begin{array}{r} 0111 \\ + 0110 \\ \hline \end{array} \quad \begin{array}{r} 0111 \\ - 0110 \\ \hline \end{array} \quad \begin{array}{r} 0110 \\ - 0101 \\ \hline \end{array}$$

- Two's complement operations are easy: do subtraction by negating then adding.

$$\begin{array}{r} 0111 \\ - 0110 \\ \hline \end{array} \quad \begin{array}{r} 0111 \\ + 1010 \\ \hline \end{array}$$

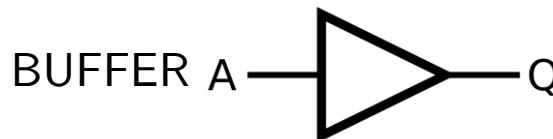
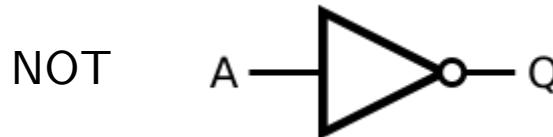
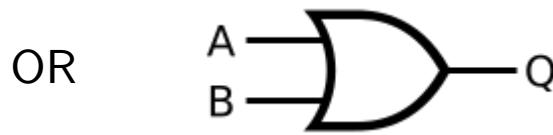
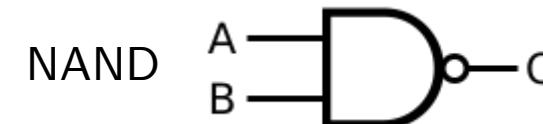
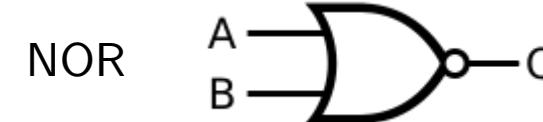
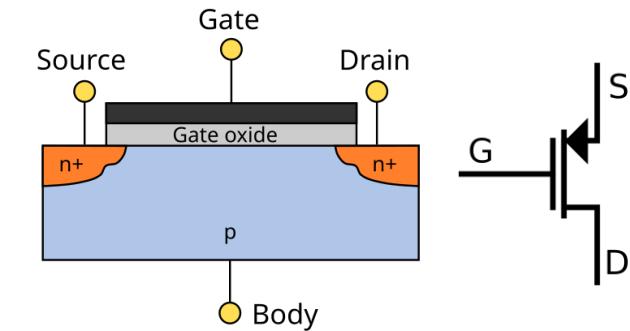
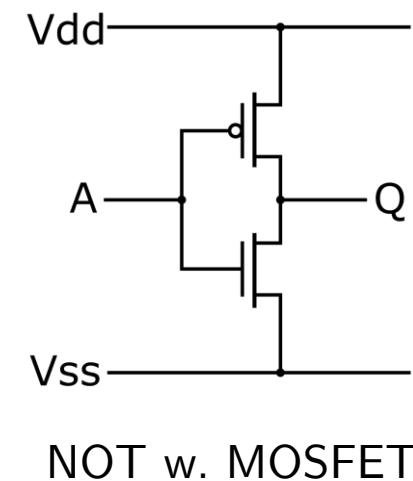
- Overflow (result too large for finite computer word).

$$\begin{array}{r} 0111 \\ + 1110 \\ \hline \end{array}$$

Logical Gates (Optional)

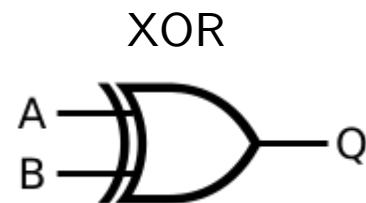
Transistors to Logical Gates

- Transistor:
 - Voltage on **Gate** controls conductivity between **Source** and **Drain**.
- You can implement logical gates with transistors.
 - Can you implement AND gate with transistors?



Truth Table

- A means for describing how a logic circuit's output depends on the logic levels present at the circuit's inputs.
- The number of input combinations will equal 2^N for an N-input truth table.
 - Determine the true table of a three-input AND gate.



Truth Table of $Q = \text{XOR}(A, B)$

	A	B	Q
0	0	0	0
0	1	1	1
1	0	0	1
1	1	1	0