CENG 3420

Computer Organization & Design

| ecture 05: Control Instructions

Textbook: Chapter 2.6-2.7
Zhengrong Wang

CSE Department, CUHK
zhengrongwang@cuhk.edu.hk

RISC-V Register File

Registers are

Faster than main memory.
But larger register files are slower.
E.g., a 64-word file may be 50% slower than a 32-word file.
Read/write port increase impacts speed quadratically.
Easier for compiler to use.

(A*B)-(C*D)-(E*F) can do multiplies in any order vs. stack.

Can hold variables so that code density improves.
5-bit to encode a register vs. 32-bit for a memory address.

32 32-bit general purpose registers.
2 read ports.

1 write ports.

Register File
. 32bits
srci addr_/E’_.
src2 addr—/El. 32
5 locations
dst addr ——
write data 7:3,—»2

2 srct
data

2 src2
data

write control

Return address ra/x1
Before function calls, explicitly save the
return address in ra (usually pc + 4).
Stack pointer sp/x2

Points to the logical top of the stack
(which is to the lowest memory address,
since the stack grows downward).

Global pointer gp/x3
Holds the base address of the memory
region containing global variables.
Function arguments a0-a7/x10-x17
Holds the arguments of a function call.

Extra arguments (>8) are pushed into
the stack.

RV32l Unprivileged Integer Register

Register | ABI Name | Description Saver
X0 zero Zero constant —

X1 ra Return address Caller
X2 sp Stack pointer —

X3 gp Global pointer —

x4 tp Thread pointer Callee
x5 to-t2 Temporaries Caller
x8 s / fp Saved / frame pointer | Callee
x9 s1 Saved register Callee
x10-x11 | a@-al Fn args/return values | Caller
x12-x17 | a2-a7 Fn args Caller
x18-x27 | s2-s11 Saved registers Callee
x28-x31 | t3-t6 Temporaries Caller
fo-7 fto-7 FP temporaries Caller
f8-9 fs0-1 FP saved registers Callee
f10-11 fao-1 FP args/return values | Caller
f12-17 fa2-7 FP args Caller
f18-27 fs2-11 FP saved registers Callee
f28-31 ft8-11 FP temporaries Caller

3

Instruction Encoding

31 27 26 25 24 20 19 15 14 12 11 7
funct?7 rs2 rsl funct3 rd opcode
imm[11:0] rsl funct3 rd opcode
imm[11:5] rs2 rsl funct3 imm|[4:0] opcode
imm[12[10:5] rs2 rsl funct3 | imm[4:1|11] opcode
imm[31:12] rd opcode
imm[20]10:1(11]19:12] rd opcode

6 base instruction formats: all 32-bit wide:
opcode: 7-bit, specifies the operation.

B/S and U/J only differs in the immediate number encoding.

rs1: 5-bit, register file address of the first source operand.
rs2: 5-bit, register file address of the second source operand.

rd: 5-bit, register file address of the destination.
imm: 12-bit or 20-bit, immediate number field.
funct: 3-bit or 10-bit, function code augmenting the opcode.

Control Instructions

._!ﬁ. Fg 8§

Branch Instructions

int foo(int i, int j, int g, int h) {
int f;

I =] IIEHHIEII | #]

if (i ==j) f=g+ h; else f =g - h; f=g+h L5:| f=g-h
return f;

} » return |e

i: a@, j: a1, g: a2, h: a3, f: a0 beq rsl, rs2, L1

foo(int, int, int, int):

Jumps to L1 if rs1 == rs2.

beq ao,al, .L5 Bt , :
. a0,a2,a3 ype Instruction.
ret L1 encoded as 13-bit offset to the branch inst.
.L5: 13-bit means + 4KiB range.
add a6,az,as3 But immediate only has 12-bit?
ret
31 30 25 24 20 19 15 14 12 11 8 7 6 0
imm[12] | imm[10:5] rs2 rsl funct3 imml[4:1] | imm][11] opcode
1 6 D D 3 4 1 7
offset[12[10:5] src2 srcl BEQ/BNE offset[11]4:1] BRANCH

* All registers initialized to zero. _start:
_ _ xori a0, ao, 1
* What is the final value of a0? xori al, al, 1
xori tO, tO, 20
xori tl, tl, 23
bne t0, tl1l, instl
addi a0, a0, 1

* Online RISCV Interpreter: beq t0, t1, inst2
* https://www.cs.cornell.edu/courses/cs341 instl:
0/2019sp/riscv/interpreter/ addi a0, a0, 2
bne t0O, zero, end
inst2:
addi a0, a0, 3
end:

sub a0, a0, al

https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/

gf

Sexs

More Branch Conditions

We have beq/bne, what about other conditions, e.g., less than?

slt rd, rsl, rs2
If rs1 < rs2, rd = 1; Else rd = 0.

Other variants:
slti rd, rsl, 25
sltu rd, rsl, rs2 # Compare as unsigned value.
sltui rd, rsl, 25

blt rsl, rs2, Label is a pseudo-instruction expanded by assembler:

slt to, rsl, rs2
bne t0, zero, Label # branch if t0 =0 -> t0 =1 -> rsl < rs2

Bounds Check Shortcut

Checking against array boundary 0 < x < y is very common!

We can treat x,y as unsigned to check for 0 < x < y with one comparison.
sltu to, sl1, t2 # to = 0 1f
s1 >= t2 (overflow) or
s1 < @ (underflow)

In two's complement representation, negative numbers look like large numbers
in unsigned notation.

Thus, an unsigned comparison of x < y also checks if x is negative as well as
if x is less thany.

int foo(int *save, int k) {

int 1 = -1;
do i += 1; while (save[i] == k);
return 1i;
}
i a6, ihal, Bsave(lT1iiad, nasave T] as a0 stores the induction variable i.
foo(int*, int): -
mv a5, a0 ab stores the address of saveli|.
1i a0, -1 al stores the compared variable k.
.L2:

addi a0,a0,1 Each iteration:

addi a5, a5, 4 Increment i, &saveli].
1w a4, -4(a5) Load saveli].
beq a4,al,.L2 Compare save]i] with k.

ret Break out of the loop if save[i] = k.

10

Unconditional Jump

RISC-V also has an unconditional branch instruction or jump instruction:

J-type: jal rd,

Jump and link (jal):
Jump to Label (21-bit offset with 20-bit intermediate - + 1MiB range from PC).
Link: save PC + 4 in rd as the return address (see function calls later).

31 30 21 20 19 12 11 76 0
imm|[20)] imm/[10:1] imm/[11] | imm[19:12] rd opcode
1 10 1 8 5) 7
offset[20:1] dest JAL

j Label is a pseudo-instruction that discard the return address (with rd = zero).
If conditional branch target cannot fit in 13-bit offset, you can rewrite with beq + jal.

Function Call

Stack: A special region of memory used as a last-in-first-out queue.

Stack is accessed via address and load/store instructions, just like normal memory.
sp (stack pointer) register holds the address of the top of the stack.
Grows downwards — subtract sp to allocate, increment sp to deallocate.

A handy temporary storage for values cannot fit in the register file.
We only have 32 registers :)

High address

SP — SP —
Contents of register x5

Contents of register x6

SP — | Contents of register x20

Low address 13

Function Calls

One function (caller) calls another function (callee).
Resources are shared between two functions, e.g., registers, memory.

We need some convention between caller and callee function to:
Pass arguments, allocate registers/stack, get return value, etc.

__attribute_ ((noinline)) callee: Register File:
int callee(int a, int b) { 0x00 add a0,a0,al ra: ©x1234 5678
return a + b; ox04 jalr zero,0(ra) sp: OXx0000 00A0
} caller: ao: OXx0000 0000
int caller() { Ox08 addi sp,sp,-16 al: Ox0000 0000
int a = 2, b = 3; 0x0C 1i al,3
int ret = callee(a, b); 0x10 1i ao, 2 Stack:
ret += 8; ox14 SW ra,12(sp) Ssp -> Ox0A0: 0000 0000
return ret; Ox18 jal ra, callee Ox09C: 0000 0000
} Ox1C 1w ra,12(sp) OXx098: 0000 0000
0x20 addi a0,a0,8 Ox094 : 0000 00O
Ox24 addi sp,sp,16 0x090: 0000 0000

Ox28 jalr zero,0(ra) 14

Steps of Function Call

Step 1: Caller sets up the arguments.
a0 — a7 holds the first 8 arguments.
Here we have two arguments: a0 holds a = 2; al holds b = 3.
li is a pseudo-instruction to load all 32-bit intermediate.

__attribute_ ((noinline)) callee: Register File:
int callee(int a, int b) { 0x00 add a0,a0,al ra: ©x1234 5678
return a + b; ox04 jalr zero,0(ra) sp: OXx0000 0090
} caller: a0: OXx0000 0002
int caller() { Ox08 addi sp,sp,-16 al: Ox0000 0003
int a = 2, b = 3; 0x0C 1i al,3
int ret = callee(a, b); 0x10 1i 20,2 Stack:
ret += 8; ox14 SW ra,12(sp) OX0A0Q: 0000 0000
return ret; Ox18 jal ra, callee Ox09C: 0000 0000
} Ox1C 1w ra,12(sp) OXx098: 0000 0000
0x20 addi a0,a0,8 Ox094 : 0000 00O
Ox24 addi sp,sp,16 Sp -> 0x090: 0000 0000

Ox28 jalr zero,0(ra) 15

Steps of Function Call

Step 2: Caller transfers the control to callee.
Save the return address in ra, jump to callee.
Return address: address of next instruction to execute once callee returns (PC + 4).
Here, ra is overwritten to Ox1C.

__attribute_ ((noinline)) callee: Register File:
int callee(int a, int b) { 0x00 add a0,a0,al ra: 0x0000 001C
return a + b; ox04 jalr zero,0(ra) sp: OXx0000 0090
} caller: a0: OXx0000 0002
int caller() { Ox08 addi sp,sp,-16 al: Ox0000 0003
int a = 2, b = 3; 0x0C 1i al,3
int ret = callee(a, b); 0x10 1i ao, 2 Stack:
ret += 8; ox14 SW ra,12(sp) OX0A0Q: 0000 0000
return ret; Ox18 jal ra, callee Ox09C: 0000 0000
} Ox1C 1w ra,12(sp) OXx098: 0000 0000
0x20 addi a0,a0,8 Ox094 : 0000 00O
Ox24 addi sp,sp,16 Sp -> 0x090: 0000 0000

Ox28 jalr zero,0(ra) 16

Steps of Function Call

Step 3: Callee perform the computation.

Get arguments from a0 — a7 — Perform the computation — Store result in a0.
Here we set a0 = a0 + al = a + b.

__attribute_ ((noinline)) callee: Register File:
int callee(int a, int b) { 0x00 add a0,a0,al ra: 0x0000 001C
return a + b; ox04 jalr zero,0(ra) sp: OXx0000 0090
} caller: a0: OXx0000 0005
int caller() { Ox08 addi sp,sp,-16 al: Ox0000 0003
int a = 2, b = 3; 0x0C 1i al,3
int ret = callee(a, b); 0x10 1i ao, 2 Stack:
ret += 8; ox14 SW ra,12(sp) OX0A0Q: 0000 0000
return ret; Ox18 jal ra, callee Ox09C: 0000 0000
} Ox1C 1w ra,12(sp) OXx098: 0000 0000
0x20 addi a0,a0,8 Ox094 : 0000 00O
Ox24 addi sp,sp,16 Sp -> 0x090: 0000 0000

Ox28 jalr zero,0(ra) 17

Steps of Function Call

Step 4: Callee transfers back to caller.

Jump to the return address stored in ra.
Here the return address is 0x1C, which is the instruction after the calling jal.

__attribute_ ((noinline)) callee: Register File:
int callee(int a, int b) { 0x00 add a0,a0,al ra: 0x0000 001C
return a + b; ox04 jalr zero,0(ra) sp: OXx0000 0090
} caller: ao: OXx0000 0005
int caller() { Ox08 addi sp,sp,-16 al: Ox0000 0003
int a = 2, b = 3; 0x0C 1i al,3
int ret = callee(a, b); 0x10 1i ao, 2 Stack:
ret += 8; ox14 SW ra,12(sp) OX0A0Q: 0000 0000
return ret; Ox18 jal ra, callee Ox09C: 0000 0000
} Ox1C 1w ra,12(sp) OXx098: 0000 0000
0x20 addi a0,a0,8 Ox094 : 0000 00O
Ox24 addi sp,sp,16 Sp -> 0x090: 0000 0000

Ox28 jalr zero,0(ra) 18

Steps of Function Call

Step 5: Callee continues execution.
Note the result is stored in a0.

__attribute_ ((noinline)) callee: Register File:
int callee(int a, int b) { 0x00 add a0,a0,al ra: 0x0000 001C
return a + b; ox04 jalr zero,0(ra) sp: OXx0000 0090
} caller: ao: OXx0000 0005
int caller() { Ox08 addi sp,sp,-16 al: Ox0000 0003
int a = 2, b = 3; 0x0C 1i al,3
int ret = callee(a, b); 0x10 1i ao, 2 Stack:
ret += 8; ox14 SW ra,12(sp) OX0A0Q: 0000 0000
return ret; Ox18 jal ra, callee Ox09C: 0000 0000
} Ox1C 1w ra,12(sp) OXx098: 0000 0000
Ox20 addi a0,a0,8 Ox094 : 0000 00O
Ox24 addi sp,sp,16 Sp -> 0x090: 0000 0000

Ox28 jalr zero,0(ra) 19

.__ﬁﬁ. I

Handle Register Conflict

What if caller and callee used the same register?

Caller is also a function, has the return address in ra.
But jal will overwrite the ra.
Now when caller returns, it will jump back to itself (0x1C)!

__attribute_ ((noinline)) callee: Register File:
int callee(int a, int b) { 0x00 add a0,a0,al ra: 0x0000 001C
return a + b; ox04 jalr zero,0(ra) sp: OXx0000 0090
} caller: a0: 0Xx0000 0005
int caller() { Ox08 addi sp,sp,-16 al: Ox0000 0003
int a = 2, b = 3; 0x0C 1i al,3
int ret = callee(a, b); 0x10 1i ao, 2 Stack:
ret += 8; ox14 SW ra,12(sp) OX0A0Q: 0000 0000
return ret; Ox18 jal ra, callee Ox09C: 0000 0000
} Ox1C 1w ra,12(sp) OXx098: 0000 0000
0x20 addi a0,a0,8 Ox094 : 0000 00O
Ox24 addi sp,sp,16 Sp -> 0x090: 0000 0000

Ox28 jalr zero,0(ra) 20

Caller/callee views each other as a
black-box.

Conservative, assuming the other would
use all registers.

Save potential conflict registers on stack.

Caller-save: If used, the caller needs to:
save it — call callee — restore it.

Callee-save: If used, the callee needs to:
save it = use it — restore it — return.

Save Conflict Register on Stack

Register | ABI Name | Description Saver
X0 zero Zero constant —

X1 ra Return address Caller
X2 sp Stack pointer —

X3 gp Global pointer —

x4 tp Thread pointer Callee
x5 to-t2 Temporaries Caller
x8 s / fp Saved / frame pointer | Callee
x9 s Saved register Callee
x10-x11 | a0-al Fn args/return values | Caller
x12-x17 | a2-a7 Fn args Caller
x18-x27 | s2-s11 Saved registers Callee
x28-x31 | t3-t6 Temporaries Caller
fo-7 fto-7 FP temporaries Caller
f8-9 fs0-1 FP saved registers Callee
f10-11 fao-1 FP args/return values | Caller
f12-17 fa2-7 FP args Caller
f18-27 fs2-11 FP saved registers Callee
f28-31 ft8-11 FP temporaries Caller

21

Example: Caller saves RA

Step 1: Allocate some space on stack.
Recall that stack grows downwards — subtraction from sp allocates stack.

__attribute_ ((noinline)) callee: Register File:
int callee(int a, int b) { 0x00 add a0,a0,al ra: ©x1234 5678
return a + b; ox04 jalr zero,0(ra) sp: Ox0000 0090
} caller: ao: OXx0000 0000
int caller() { Ox08 addi sp,sp,-16 al: Ox0000 0000
int a = 2, b = 3; 0x0C 1i al,3
int ret = callee(a, b); 0x10 1i ao, 2 Stack:
ret += 8; ox14 SW ra,12(sp) OX0A0Q: 0000 0000
return ret; Ox18 jal ra, callee Ox09C: 0000 0000
} Ox1C 1w ra,12(sp) OXx098: 0000 0000
0x20 addi a0,a0,8 Ox094 : 0000 00O
Ox24 addi sp,sp,16 sp -> 0x090: 0000 0000

Ox28 jalr zero,0(ra) 22

Step 2: Caller saves RA

Step 2: Save ra on stack before function call.

Recall that stack is just special region of memory, accessed by load/store instructions.
Using a sw (store word) instruction and sp as the address.

Here, sp + 12 = 0x90 + 12 = 0x9C.

__attribute_ ((noinline)) callee: Register File:
int callee(int a, int b) { 0x00 add a0,a0,al ra: ©x1234 5678
return a + b; ox04 jalr zero,0(ra) sp: OXx0000 0090
} caller: ao: OXx0000 0000
int caller() { Ox08 addi sp,sp,-16 al: Ox0000 0000
int a = 2, b = 3; 0x0C 1i al,3
int ret = callee(a, b); 0x10 1i ao, 2 Stack:
ret += 8; ox14 SW ra,12(sp) OX0A0Q: 0000 0000
return ret; Ox18 jal ra, callee Ox09C: 1234 5678
} Ox1C 1w ra,12(sp) OXx098: 0000 0000
0x20 addi a0,a0,8 Ox094 : 0000 00O
Ox24 addi sp,sp,16 Sp -> 0x090: 0000 0000

Ox28 jalr zero,0(ra) 23

Example: Caller saves RA

Step 3: Restore ra after function call.
Recall that stack is just special region of memory, accessed by load/store instructions.
Using a lw (load word) instruction and sp to read back the saved return address from ra.
Now ra is restored to the original value 0x1234 5678.
And the caller can return normally.

__attribute_ ((noinline)) callee: Register File:
int callee(int a, int b) { 0x00 add a0,a0,al ra: ©x1234 5678
return a + b; ox04 jalr zero,0(ra) sp: OXx0000 0090
} caller: ao: OXx0000 0000
int caller() { Ox08 addi sp,sp,-16 al: Ox0000 0000
int a = 2, b = 3; 0x0C 1i al,3
int ret = callee(a, b); 0x10 1i ao, 2 Stack:
ret += 8; ox14 SW ra,12(sp) OX0A0Q: 0000 0000
return ret; Ox18 jal ra, callee Ox09C: 1234 5678
} ox1C 1w ra,12(sp) Ox098: 0000 0000
0x20 addi a0,a0,8 Ox094 : 0000 00O
Ox24 addi sp,sp,16 Sp -> 0x090: 0000 0000

Ox28 jalr zero,0(ra) 24

a0 — a7 can hold 8 arguments — Extra arguments are passed through stack!

__attribute_ ((noinline)) _Z6calleeiiiiiiiii:
int callee(%nt a, %nt b, %nt C, %nt d, e Read extra
int e, int f, int g, int h, 1w a5,0(sp) from stack
int extra) { add a0,a0,ab '
return a + b + c + d + e ret
+ f + g + h + extra; _Z6callerv:
} addi Ssp,sp,-32
int caller() { 1li a5,10 Save extra
int a=2,b=3, c=4, d-=-5; Sw a5,0(sp) to stack.
inte=6, f=7, g=28, h=29; . e
int extra = 10; 1i a0, 2
int ret = callee(SW ra,28(sp)
a, b, ¢, d, e, f, g, h, call _Z6calleeiiiiiiiii
extra); 1w ra,28(sp)
ret += 8; addi 20,a0,8
return ret; addi sp,sp,32

} jr ra e

Stack Frame

* Stack holds local values cannot fit in the register file. high addr

* Imagine each function has a frame holds local data:

* Stack is last-in-first-out — perfect match to hold frames:

* Call a function — push a frame on the stack. Saved return addr
* Returning from a function — pop a frame from the stack.

Saved local regs
* The frame pointer (fp) points to the first word of the | (if any)
frame of a function — providing a stable “base” register |[Local arrays s

for the function. structures (if
any)

* fp is initialized using sp on a call and sp is restored
using fp on a return.

low addr

26

Static data segment for constants and other
static variables (e.g., global arrays).

Dynamic data segment (aka heap) for structures
that grow and shrink (e.g., linked lists).

Allocate space on the heap with malloc() and 9P

free it with free() in C.

PC

b

Ox 7ffffffc

Ox 1000 8000

14 0x 1000 0000

——0x 0040 0000

~ Reserved

Ox 0000 0000

27

Some classification on function type:
leaf function does not call other function.
Nested function calls other function.
Recursive function calls itself.

Computer the factorial of n = n x (n-1) x ...

factor(0) =1

factor(1) = 1 * factor(0) = 1
factor(2) = 2 * factor(1) = 2
factor(3) = 3 * factor(2) = 6

Example: Compiling a Recursive Function

int factor(int n) {
if (n == 0)
return 1;
else
return n * factor(n - 1);

28

!

Compile factor()

S
factor:
int factor(int n) { addi sp,sp,-32
if (n == @) SW ra,28(sp)
return 1; W s0,24(sp)
addi s@,sp,32
else sw a0, -20(s0)
return n * factor(n - 1); 1w a5,-20(s0)
} bne a5,zero,.L2
11 a5,1
j -L3
* Notes: L2:
* jr ra is pseudo-instruction for jalr zero, O(ra) igdi :i’iafie)
* call label is pseudo-instruction for jal ra, label mv a@, a5
* | label is pseudo-instruction for jal zero, label :1311 ﬁ
* ret is pseudo-instruction for jalr zero, O(ra) 1w 25,-20(0)
mul a5,a4,a5b
.L3:
mv ae,ab
1w ra,28(sp)
1w s@,24(sp)

addi sp,sp,32
jr ra

Practice

Give the assembly code of the following function:
a0 has g, al has h, a2 has i, a3 has j.

int foo(int g, int h, int i, int j) { foo:
int f; add a0,a0,al
f=(+h)-(+73); add a2,a2,a3
return f; sub a0, a0, a2

} ret

30

Summary

Recap C Compilation Flow

Assembly Language Program

Assembler

Machine Language

Library Route

Executable: Machine Language

Memory

Compile Benefit

Compiler can aggressively optimize the generated machine code.

Controlled by —Ox to specify optimization level. —O0 no optimization; -O3 aggressive.

Example optimizations:
Constant propagation, function inline, loop unroll, vectorization, etc.

// Source code # -01 # -02
int foo(int *array, int N) { main: main:
int ret = 9; addi Sp,sp,-32 1i
for (int 1 = 0; i < N; ++1i) SW ra,28(sp) ret
ret += array[i]; SW zero,8(sp)
return ret; 1i a5, 2
} SW a5,12(sp)
int main() { mv al, a5
int a[2] = {9, 2}; addi ao,sp,8
return foo(a, 2); call foo
} 1w ra,28(sp)

addi sp,sp,32
jr ra

ao, 2

33

Compile Benefit

Delivers higher performance.

Relative Clock cycles | Instruction count
gcc optimization performance (millions) (millions)

None 1.00 158,615 114,938 1.38

01 (medium) 2.37 66,990 37,470 1.79

02 (full) 2.38 66,521 39,993 1.66

03 (procedure integration) 2.41 65,747 44,993 1.46

FIGURE 2.26 Comparing performance, instruction count, and CPl using compiler
optimization for Bubble Sort. The programs sorted 100,000 32-bit words with the array initialized to
random values. These programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system
bus with 2 GB of PC2100 DDR SDRAM. It used Linux version 2.4.20.

34

Addressing Mode

1. Immediate addressing

immediate | rs1 |funct3| rd | op

2. Register addressing

funct7| rs2 | rs1 [funct3| rd | op Registers

| - Register

3. Base addressing

immediate | rs1 |funct3| rd | op
[Memory

word

Register

?

4. PC-relative addressing

imm | rs2 | rs1 |funct3|imm| op

| | Memory

PC Word

	Default Section
	Slide 1: CENG 3420 Computer Organization & Design Lecture 05: Control Instructions
	Slide 2: RISC-V Register File
	Slide 3: RV32I Unprivileged Integer Register
	Slide 4: Instruction Encoding

	Control Instructions
	Slide 5: Control Instructions
	Slide 6: Branch Instructions
	Slide 7: Example
	Slide 8: More Branch Conditions
	Slide 9: Bounds Check Shortcut
	Slide 10: Loops
	Slide 11: Unconditional Jump

	Function Call
	Slide 12: Function Call
	Slide 13: Stack
	Slide 14: Function Calls
	Slide 15: Steps of Function Call
	Slide 16: Steps of Function Call
	Slide 17: Steps of Function Call
	Slide 18: Steps of Function Call
	Slide 19: Steps of Function Call
	Slide 20: Handle Register Conflict
	Slide 21: Save Conflict Register on Stack
	Slide 22: Example: Caller saves RA
	Slide 23: Step 2: Caller saves RA
	Slide 24: Example: Caller saves RA
	Slide 25: Support More than 8 Arguments
	Slide 26: Stack Frame
	Slide 27: Allocating Space on the Heap
	Slide 28: Example: Compiling a Recursive Function
	Slide 29: Compile factor()
	Slide 30: Practice

	Summary
	Slide 31: Summary
	Slide 32: Recap C Compilation Flow
	Slide 33: Compile Benefit
	Slide 34: Compile Benefit
	Slide 35: Addressing Mode

