
CENG 3420
Computer Organization & Design
Lecture 05: Control Instructions
Textbook: Chapter 2.6-2.7

Zhengrong Wang

CSE Department, CUHK

zhengrongwang@cuhk.edu.hk

1

RISC-V Register File

• Registers are
• Faster than main memory.

• But larger register files are slower.

• E.g., a 64-word file may be 50% slower than a 32-word file.

• Read/write port increase impacts speed quadratically.

• Easier for compiler to use.

• (A*B)-(C*D)-(E*F) can do multiplies in any order vs. stack.

• Can hold variables so that code density improves.

• 5-bit to encode a register vs. 32-bit for a memory address.

• 32 32-bit general purpose registers.

• 2 read ports.

• 1 write ports.

2

RV32I Unprivileged Integer Register

• Return address ra/x1
• Before function calls, explicitly save the

return address in ra (usually pc + 4).

• Stack pointer sp/x2
• Points to the logical top of the stack

(which is to the lowest memory address,
since the stack grows downward).

• Global pointer gp/x3
• Holds the base address of the memory

region containing global variables.

• Function arguments a0-a7/x10-x17
• Holds the arguments of a function call.

• Extra arguments (>8) are pushed into
the stack.

3

Instruction Encoding

• 6 base instruction formats: all 32-bit wide:
• opcode: 7-bit, specifies the operation.

• rs1: 5-bit, register file address of the first source operand.

• rs2: 5-bit, register file address of the second source operand.

• rd: 5-bit, register file address of the destination.

• imm: 12-bit or 20-bit, immediate number field.

• funct: 3-bit or 10-bit, function code augmenting the opcode.

• B/S and U/J only differs in the immediate number encoding.

4

Control Instructions

5

Branch Instructions

6

int foo(int i, int j, int g, int h) {
 int f;
 if (i == j) f = g + h; else f = g - h;
 return f;
}

i: a0, j: a1, g: a2, h: a3, f: a0
foo(int, int, int, int):
 beq a0,a1,.L5
 sub a0,a2,a3
 ret
.L5:
 add a0,a2,a3
 ret

• beq rs1, rs2, L1
• Jumps to L1 if rs1 == rs2.

• B-type instruction.

• L1 encoded as 13-bit offset to the branch inst.

• 13-bit means ± 4KiB range.

• But immediate only has 12-bit?

i == j?

f = g + h f = g - h

return

i = j i ≠ j

.L5:

Example

• All registers initialized to zero.

• What is the final value of a0?

• Online RISCV Interpreter:
• https://www.cs.cornell.edu/courses/cs341

0/2019sp/riscv/interpreter/

7

_start :
 xori a0 , a0 , 1
 xori a1 , a1 , 1
 xori t0 , t0 , 20
 xori t1 , t1 , 23
 bne t0 , t1 , inst1
 addi a0 , a0 , 1
 beq t0 , t1 , inst2

inst1 :
 addi a0 , a0 , 2
 bne t0 , zero , end

inst2 :
 addi a0 , a0 , 3

end :
 sub a0 , a0 , a1

https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/

More Branch Conditions

• We have beq/bne, what about other conditions, e.g., less than?

• slt rd, rs1, rs2
• If rs1 < rs2, rd = 1; Else rd = 0.

• Other variants:
• slti rd, rs1, 25

• sltu rd, rs1, rs2 # Compare as unsigned value.

• sltui rd, rs1, 25

• blt rs1, rs2, Label is a pseudo-instruction expanded by assembler:
• slt t0, rs1, rs2

• bne t0, zero, Label # branch if t0 != 0 -> t0 = 1 -> rs1 < rs2

8

Bounds Check Shortcut

• Checking against array boundary 0 ≤ 𝑥 < 𝑦 is very common!

• We can treat 𝑥, 𝑦 as unsigned to check for 0 ≤ 𝑥 < 𝑦 with one comparison.
• sltu t0, s1, t2 # t0 = 0 if

• # s1 >= t2 (overflow) or

• # s1 < 0 (underflow)

• In two’s complement representation, negative numbers look like large numbers
in unsigned notation.

• Thus, an unsigned comparison of x < y also checks if x is negative as well as
if x is less than y.

9

Loops

10

int foo(int *save, int k) {
 int i = -1;
 do i += 1; while (save[i] == k);
 return i;
}

i: a0, k: a1, save[i]: a4, &save[i]: a5
foo(int*, int):

mv a5,a0
li a0,-1

.L2:
addi a0,a0,1
addi a5,a5,4
lw a4,-4(a5)
beq a4,a1,.L2
ret

• a0 stores the induction variable i.

• a5 stores the address of save[i].

• a1 stores the compared variable k.

• Each iteration:
• Increment i, &save[i].
• Load save[i].
• Compare save[i] with k.
• Break out of the loop if save[i] != k.

Unconditional Jump

• RISC-V also has an unconditional branch instruction or jump instruction:

• Jump and link (jal):
• Jump to Label (21-bit offset with 20-bit intermediate → ± 1MiB range from PC).

• Link: save PC + 4 in rd as the return address (see function calls later).

• j Label is a pseudo-instruction that discard the return address (with rd = zero).

• If conditional branch target cannot fit in 13-bit offset, you can rewrite with beq + jal.

11

J-type: jal rd, Label

Function Call

12

Stack

• Stack: A special region of memory used as a last-in-first-out queue.
• Stack is accessed via address and load/store instructions, just like normal memory.

• sp (stack pointer) register holds the address of the top of the stack.

• Grows downwards – subtract sp to allocate, increment sp to deallocate.

• A handy temporary storage for values cannot fit in the register file.
• We only have 32 registers :)

13

Function Calls

14

• One function (caller) calls another function (callee).
• Resources are shared between two functions, e.g., registers, memory.

• We need some convention between caller and callee function to:
• Pass arguments, allocate registers/stack, get return value, etc.

__attribute__((noinline))
int callee(int a, int b) {
 return a + b;
}
int caller() {
 int a = 2, b = 3;
 int ret = callee(a, b);
 ret += 8;
 return ret;
}

Register File:
ra: 0x1234_5678
sp: 0x0000_00A0
a0: 0x0000_0000
a1: 0x0000_0000

Stack:
sp -> 0x0A0: 0000_0000
 0x09C: 0000_0000
 0x098: 0000_0000
 0x094: 0000_0000
 0x090: 0000_0000

callee:
0x00 add a0,a0,a1
0x04 jalr zero,0(ra)
caller:
0x08 addi sp,sp,-16
0x0C li a1,3
0x10 li a0,2
0x14 sw ra,12(sp)
0x18 jal ra, callee
0x1C lw ra,12(sp)
0x20 addi a0,a0,8
0x24 addi sp,sp,16
0x28 jalr zero,0(ra)

callee:
0x00 add a0,a0,a1
0x04 jalr zero,0(ra)
caller:
0x08 addi sp,sp,-16
0x0C li a1,3
0x10 li a0,2
0x14 sw ra,12(sp)
0x18 jal ra, callee
0x1C lw ra,12(sp)
0x20 addi a0,a0,8
0x24 addi sp,sp,16
0x28 jalr zero,0(ra)

Steps of Function Call

• Step 1: Caller sets up the arguments.
• a0 – a7 holds the first 8 arguments.

• Here we have two arguments: a0 holds a = 2; a1 holds b = 3.

• li is a pseudo-instruction to load all 32-bit intermediate.

15

__attribute__((noinline))
int callee(int a, int b) {
 return a + b;
}
int caller() {
 int a = 2, b = 3;
 int ret = callee(a, b);
 ret += 8;
 return ret;
}

Register File:
ra: 0x1234_5678
sp: 0x0000_0090
a0: 0x0000_0002
a1: 0x0000_0003

Stack:
 0x0A0: 0000_0000
 0x09C: 0000_0000
 0x098: 0000_0000
 0x094: 0000_0000
sp -> 0x090: 0000_0000

callee:
0x00 add a0,a0,a1
0x04 jalr zero,0(ra)
caller:
0x08 addi sp,sp,-16
0x0C li a1,3
0x10 li a0,2
0x14 sw ra,12(sp)
0x18 jal ra, callee
0x1C lw ra,12(sp)
0x20 addi a0,a0,8
0x24 addi sp,sp,16
0x28 jalr zero,0(ra)

Steps of Function Call

• Step 2: Caller transfers the control to callee.
• Save the return address in ra, jump to callee.

• Return address: address of next instruction to execute once callee returns (PC + 4).

• Here, ra is overwritten to 0x1C.

16

__attribute__((noinline))
int callee(int a, int b) {
 return a + b;
}
int caller() {
 int a = 2, b = 3;
 int ret = callee(a, b);
 ret += 8;
 return ret;
}

Register File:
ra: 0x0000_001C
sp: 0x0000_0090
a0: 0x0000_0002
a1: 0x0000_0003

Stack:
 0x0A0: 0000_0000
 0x09C: 0000_0000
 0x098: 0000_0000
 0x094: 0000_0000
sp -> 0x090: 0000_0000

callee:
0x00 add a0,a0,a1
0x04 jalr zero,0(ra)
caller:
0x08 addi sp,sp,-16
0x0C li a1,3
0x10 li a0,2
0x14 sw ra,12(sp)
0x18 jal ra, callee
0x1C lw ra,12(sp)
0x20 addi a0,a0,8
0x24 addi sp,sp,16
0x28 jalr zero,0(ra)

Steps of Function Call

• Step 3: Callee perform the computation.
• Get arguments from a0 – a7 → Perform the computation → Store result in a0.

• Here we set a0 = a0 + a1 = a + b.

17

__attribute__((noinline))
int callee(int a, int b) {
 return a + b;
}
int caller() {
 int a = 2, b = 3;
 int ret = callee(a, b);
 ret += 8;
 return ret;
}

Register File:
ra: 0x0000_001C
sp: 0x0000_0090
a0: 0x0000_0005
a1: 0x0000_0003

Stack:
 0x0A0: 0000_0000
 0x09C: 0000_0000
 0x098: 0000_0000
 0x094: 0000_0000
sp -> 0x090: 0000_0000

Steps of Function Call

• Step 4: Callee transfers back to caller.
• Jump to the return address stored in ra.

• Here the return address is 0x1C, which is the instruction after the calling jal.

18

__attribute__((noinline))
int callee(int a, int b) {
 return a + b;
}
int caller() {
 int a = 2, b = 3;
 int ret = callee(a, b);
 ret += 8;
 return ret;
}

callee:
0x00 add a0,a0,a1
0x04 jalr zero,0(ra)
caller:
0x08 addi sp,sp,-16
0x0C li a1,3
0x10 li a0,2
0x14 sw ra,12(sp)
0x18 jal ra, callee
0x1C lw ra,12(sp)
0x20 addi a0,a0,8
0x24 addi sp,sp,16
0x28 jalr zero,0(ra)

Register File:
ra: 0x0000_001C
sp: 0x0000_0090
a0: 0x0000_0005
a1: 0x0000_0003

Stack:
 0x0A0: 0000_0000
 0x09C: 0000_0000
 0x098: 0000_0000
 0x094: 0000_0000
sp -> 0x090: 0000_0000

Steps of Function Call

• Step 5: Callee continues execution.
• Note the result is stored in a0.

19

__attribute__((noinline))
int callee(int a, int b) {
 return a + b;
}
int caller() {
 int a = 2, b = 3;
 int ret = callee(a, b);
 ret += 8;
 return ret;
}

callee:
0x00 add a0,a0,a1
0x04 jalr zero,0(ra)
caller:
0x08 addi sp,sp,-16
0x0C li a1,3
0x10 li a0,2
0x14 sw ra,12(sp)
0x18 jal ra, callee
0x1C lw ra,12(sp)
0x20 addi a0,a0,8
0x24 addi sp,sp,16
0x28 jalr zero,0(ra)

Register File:
ra: 0x0000_001C
sp: 0x0000_0090
a0: 0x0000_0005
a1: 0x0000_0003

Stack:
 0x0A0: 0000_0000
 0x09C: 0000_0000
 0x098: 0000_0000
 0x094: 0000_0000
sp -> 0x090: 0000_0000

Handle Register Conflict

• What if caller and callee used the same register?
• Caller is also a function, has the return address in ra.

• But jal will overwrite the ra.

• Now when caller returns, it will jump back to itself (0x1C)!

20

__attribute__((noinline))
int callee(int a, int b) {
 return a + b;
}
int caller() {
 int a = 2, b = 3;
 int ret = callee(a, b);
 ret += 8;
 return ret;
}

callee:
0x00 add a0,a0,a1
0x04 jalr zero,0(ra)
caller:
0x08 addi sp,sp,-16
0x0C li a1,3
0x10 li a0,2
0x14 sw ra,12(sp)
0x18 jal ra, callee
0x1C lw ra,12(sp)
0x20 addi a0,a0,8
0x24 addi sp,sp,16
0x28 jalr zero,0(ra)

Register File:
ra: 0x0000_001C
sp: 0x0000_0090
a0: 0x0000_0005
a1: 0x0000_0003

Stack:
 0x0A0: 0000_0000
 0x09C: 0000_0000
 0x098: 0000_0000
 0x094: 0000_0000
sp -> 0x090: 0000_0000

Save Conflict Register on Stack

• Caller/callee views each other as a
black-box.
• Conservative, assuming the other would

use all registers.

• Save potential conflict registers on stack.

• Caller-save: If used, the caller needs to:
save it → call callee → restore it.

• Callee-save: If used, the callee needs to:
save it → use it → restore it → return.

21

Example: Caller saves RA

• Step 1: Allocate some space on stack.
• Recall that stack grows downwards → subtraction from sp allocates stack.

22

__attribute__((noinline))
int callee(int a, int b) {
 return a + b;
}
int caller() {
 int a = 2, b = 3;
 int ret = callee(a, b);
 ret += 8;
 return ret;
}

Register File:
ra: 0x1234_5678
sp: 0x0000_0090
a0: 0x0000_0000
a1: 0x0000_0000

Stack:
 0x0A0: 0000_0000
 0x09C: 0000_0000
 0x098: 0000_0000
 0x094: 0000_0000
sp -> 0x090: 0000_0000

callee:
0x00 add a0,a0,a1
0x04 jalr zero,0(ra)
caller:
0x08 addi sp,sp,-16
0x0C li a1,3
0x10 li a0,2
0x14 sw ra,12(sp)
0x18 jal ra, callee
0x1C lw ra,12(sp)
0x20 addi a0,a0,8
0x24 addi sp,sp,16
0x28 jalr zero,0(ra)

Step 2: Caller saves RA

• Step 2: Save ra on stack before function call.
• Recall that stack is just special region of memory, accessed by load/store instructions.

• Using a sw (store_word) instruction and sp as the address.

• Here, sp + 12 = 0x90 + 12 = 0x9C.

23

__attribute__((noinline))
int callee(int a, int b) {
 return a + b;
}
int caller() {
 int a = 2, b = 3;
 int ret = callee(a, b);
 ret += 8;
 return ret;
}

Register File:
ra: 0x1234_5678
sp: 0x0000_0090
a0: 0x0000_0000
a1: 0x0000_0000

Stack:
 0x0A0: 0000_0000
 0x09C: 1234_5678
 0x098: 0000_0000
 0x094: 0000_0000
sp -> 0x090: 0000_0000

callee:
0x00 add a0,a0,a1
0x04 jalr zero,0(ra)
caller:
0x08 addi sp,sp,-16
0x0C li a1,3
0x10 li a0,2
0x14 sw ra,12(sp)
0x18 jal ra, callee
0x1C lw ra,12(sp)
0x20 addi a0,a0,8
0x24 addi sp,sp,16
0x28 jalr zero,0(ra)

Example: Caller saves RA

• Step 3: Restore ra after function call.
• Recall that stack is just special region of memory, accessed by load/store instructions.

• Using a lw (load_word) instruction and sp to read back the saved return address from ra.

• Now ra is restored to the original value 0x1234_5678.

• And the caller can return normally.

24

__attribute__((noinline))
int callee(int a, int b) {
 return a + b;
}
int caller() {
 int a = 2, b = 3;
 int ret = callee(a, b);
 ret += 8;
 return ret;
}

Register File:
ra: 0x1234_5678
sp: 0x0000_0090
a0: 0x0000_0000
a1: 0x0000_0000

Stack:
 0x0A0: 0000_0000
 0x09C: 1234_5678
 0x098: 0000_0000
 0x094: 0000_0000
sp -> 0x090: 0000_0000

callee:
0x00 add a0,a0,a1
0x04 jalr zero,0(ra)
caller:
0x08 addi sp,sp,-16
0x0C li a1,3
0x10 li a0,2
0x14 sw ra,12(sp)
0x18 jal ra, callee
0x1C lw ra,12(sp)
0x20 addi a0,a0,8
0x24 addi sp,sp,16
0x28 jalr zero,0(ra)

Support More than 8 Arguments

• a0 – a7 can hold 8 arguments → Extra arguments are passed through stack!

25

_Z6calleeiiiiiiiii:
...
lw a5,0(sp)
add a0,a0,a5
ret

_Z6callerv:
addi sp,sp,-32
li a5,10
sw a5,0(sp)
...
li a0,2
sw ra,28(sp)
call _Z6calleeiiiiiiiii
lw ra,28(sp)
addi a0,a0,8
addi sp,sp,32
jr ra

__attribute__((noinline))
int callee(int a, int b, int c, int d,
 int e, int f, int g, int h,
 int extra) {
 return a + b + c + d + e
 + f + g + h + extra;
}
int caller() {
 int a = 2, b = 3, c = 4, d = 5;
 int e = 6, f = 7, g = 8, h = 9;
 int extra = 10;
 int ret = callee(
 a, b, c, d, e, f, g, h,
 extra);
 ret += 8;
 return ret;
}

Read extra
from stack.

Save extra
to stack.

Stack Frame

• Stack holds local values cannot fit in the register file.

• Imagine each function has a frame holds local data:

• Stack is last-in-first-out – perfect match to hold frames:
• Call a function → push a frame on the stack.

• Returning from a function → pop a frame from the stack.

• The frame pointer (fp) points to the first word of the
frame of a function – providing a stable “base” register
for the function.

• fp is initialized using sp on a call and sp is restored
using fp on a return.

26

Allocating Space on the Heap

• Static data segment for constants and other
static variables (e.g., global arrays).

• Dynamic data segment (aka heap) for structures
that grow and shrink (e.g., linked lists).

• Allocate space on the heap with malloc() and
free it with free() in C.

27

Example: Compiling a Recursive Function

• Some classification on function type:
• Leaf function does not call other function.

• Nested function calls other function.

• Recursive function calls itself.

• Computer the factorial of n = n x (n-1) x … 1.
• factor(0) = 1

• factor(1) = 1 * factor(0) = 1

• factor(2) = 2 * factor(1) = 2

• factor(3) = 3 * factor(2) = 6

• …

28

Compile factor()

• Notes:
• jr ra is pseudo-instruction for jalr zero, 0(ra)

• call label is pseudo-instruction for jal ra, label

• j label is pseudo-instruction for jal zero, label

• ret is pseudo-instruction for jalr zero, 0(ra)

29

Practice

• Give the assembly code of the following function:
• a0 has g, a1 has h, a2 has i, a3 has j.

30

int foo(int g, int h, int i, int j) {
 int f;
 f = (g + h) - (i + j);
 return f;
}

foo:
 add a0,a0,a1
 add a2,a2,a3
 sub a0,a0,a2
 ret

Summary

31

Recap C Compilation Flow

32

C Program

Compiler

Assembly Language Program

Assembler

Machine Language

Linker

Library Route

Executable: Machine Language

Loader

Memory
…

Compile Benefit

• Compiler can aggressively optimize the generated machine code.
• Controlled by –Ox to specify optimization level. –O0 no optimization; -O3 aggressive.

• Example optimizations:
• Constant propagation, function inline, loop unroll, vectorization, etc.

33

// Source code
int foo(int *array, int N) {
 int ret = 0;
 for (int i = 0; i < N; ++i)
 ret += array[i];
 return ret;
}
int main() {
 int a[2] = {0, 2};
 return foo(a, 2);
}

-O1
main:
 addi sp,sp,-32
 sw ra,28(sp)
 sw zero,8(sp)
 li a5,2
 sw a5,12(sp)
 mv a1,a5
 addi a0,sp,8
 call foo
 lw ra,28(sp)
 addi sp,sp,32
 jr ra

-O2
main:
 li a0,2
 ret

Compile Benefit

• Delivers higher performance.

34

Addressing Mode

35

	Default Section
	Slide 1: CENG 3420 Computer Organization & Design Lecture 05: Control Instructions
	Slide 2: RISC-V Register File
	Slide 3: RV32I Unprivileged Integer Register
	Slide 4: Instruction Encoding

	Control Instructions
	Slide 5: Control Instructions
	Slide 6: Branch Instructions
	Slide 7: Example
	Slide 8: More Branch Conditions
	Slide 9: Bounds Check Shortcut
	Slide 10: Loops
	Slide 11: Unconditional Jump

	Function Call
	Slide 12: Function Call
	Slide 13: Stack
	Slide 14: Function Calls
	Slide 15: Steps of Function Call
	Slide 16: Steps of Function Call
	Slide 17: Steps of Function Call
	Slide 18: Steps of Function Call
	Slide 19: Steps of Function Call
	Slide 20: Handle Register Conflict
	Slide 21: Save Conflict Register on Stack
	Slide 22: Example: Caller saves RA
	Slide 23: Step 2: Caller saves RA
	Slide 24: Example: Caller saves RA
	Slide 25: Support More than 8 Arguments
	Slide 26: Stack Frame
	Slide 27: Allocating Space on the Heap
	Slide 28: Example: Compiling a Recursive Function
	Slide 29: Compile factor()
	Slide 30: Practice

	Summary
	Slide 31: Summary
	Slide 32: Recap C Compilation Flow
	Slide 33: Compile Benefit
	Slide 34: Compile Benefit
	Slide 35: Addressing Mode

