CENG 3420

Computer Organization & Design
Lecture 06: ALU

Textbook: Chapter 3.2-3.4 & A.5-A.6
Zhengrong Wang

CSE Department, CUHK
zhengrongwang@cuhk.edu.hk

Overview

Processor Overview

f

4 —» g
%dd _ Add
[2
L A
Data
Register #
| PC [#> Address Instruction { Registers >ALU Address
_ Register # Data
Instruction . memo
memory ¢+>| Register # I i
» Data

%f

&7 Arithmetic-Logic Unit (ALU)
We have seen the abstraction.

Instruction set architecture (ISA).
Machine code and instructions.

Next: we will design the arithmetic-logic unit (ALU). >ALU
All instructions need to use the ALU.
E.g., add two numbers, calculate the address. W

Let's start with addition.

Addition Unit

Full Adder

— | a | b | Camym | Camyout | Sum

0+ 0+ 0=004,

0+0+1=014,

O0+1+0=014,

Sum

0+1+1=104,

1+0+0=01%,

140 +1 =104y,

141+ 0 =104y,

Plr| ||l oo olo
RlRr| ool r L, olo
rlo|r|o|lrlo r|lo
RlRr| k|l ol r o oo
rlo|lo|r|olr rlo

CarryOut

1+1+1 =194,

FIGURE A.5.3 Input and output specification for a 1-bit adder.

* Sum = a XOR b XOR Carryln
* CarryOut = (a AND b) OR (a AND CarryIn) OR (b AND CarryIn)

* How to implement it in logical gates?

1-bit Full Adder in Logical Gates

* Sum = (a XOR b) XOR Carryln

CarryOut = (a AND b) OR (a AND CarryIn) OR (b AND CarryIn)
CarryOut = (a AND b) OR ((a OR b) AND CarryIn)

We can replace OR with XOR because (a AND b) already handles the case a=b=1
CarryOut = (a AND b) OR ((a XOR b) AND CarrylIn)

So that we can reuse (a XOR b) from Sum.

reused (a XOR b)

Carryln
a o\ R
b Sum
| I_/ .
:>_ *— B CarryQut
Carryln

Sum

CarryOut

. Support Logical Operation

Add AND/OR and select the output based on instruction opcode/funct.

Operation
Operation Result Carryln |
00 a&b a te—— /D
o1 a|b g
= 2t 0 '_:D 1 » Result
—
1+ >
This is a 1-bit ALU with AND/OR/ADD operation. =~ | —

How to support 32-bit operand? CarryOut

Support 32-bit Operand

Concatenate 32 1-bit ALUs.

Ripple carry adder.
CarryOut = Carryln

Pro: Simple, low hardware cost.

Con: Long latency, glitch, high energy consumption.

Operation

Y

Carryln
l Y
a0 —, Carryln
ALUO
b0 CarryQOut
Y l
a1l —,| Carryln
b1 ALU1
CarryOut
Y \
a2 | Carryln
b2 ALU2
CarryOut

Y

4

|

a31l—=

P31—s

Carryln
ALU31

Y

Result0

Result1

Result2

Result31

9

Glitch

A brief, unintended signal spike or transition that deviates from the expected
output due to timing mismatches or propagation delays.

Increase energy consumption.

May cause error in next stage.

OR O
In ripple-carry ALU, long propagation for the carry. ' O1
14
: : T
How can we improve it? X
1
S— T
0

10

Carry Look-ahead Adder

Ripple carry adder: carry propagates one-by-one, O(n).

Rewrite carry logic with notation OR — +, AND — -

Generate: whether a carry is generated at i-th bit: G; = a; - b;

Propagate: whether a carry would be propagated at i-th bit: P; = a; + b;

Carry at i-th bit is: Ci = Gi + Pi . Ci—l

Either generated or propagated. _D

Expand this: _D_L

Ci=G;i+P-Cig =0G; + (Pi (Gioq + Py - Ci—z))) B
=G +P, Gy + AP c-Py-P - Py Cip

-
)}

JU
]

The trick: P; and G; can be computed in parallel (O(1)).
Therefore: chain of P; - ...+ Py - Cj;, can be computed with tree (O(log(n))).
Used more gates, but less latency and glitch.

11

%?

Support Subtraction

Remember two's complement: —x = x + 1
a—b=a+(-b)=a+b+1

Subtract is implement as:

Inverting b.
Setting Carryln to 1 for bit 0 (LSB).

Control signal table (x is don't care).

Operation Binvert Carryln (LSB) Result

00 0 X a &b
01 0 X a | b
10 0 0 a+b
10 1 1 a -b

Binvert

Operation
Carryln

Y

()

0

g

= Result

12

ISP
._!Tl. I

Support NOR

a NOR b = NOT (a OR b) = (NOT a) AND (NOT b)
Invert a and b, then AND.

Operation Ainvert Binvert Carryln Result
(LSB)

00 %) %) X a &b

00 1 1 X ~(a | b)

01 o %) X al| b

10 %) %) %) a+b

10 (%] 1 1 a-b

= Result

Ainvert Operation
Binvert Carryln
v
0 Y
! } 0
1 > /
’_L/ 1
L
Y
h
. fq .
| 4 2
1 - \ /

k
CarryQut

13

Detect Overflow

* We have limited hardware to represent integers (here 32-bit).

* Overflow: result can not be presented by hardware.

+ E.g., add two large positive/negative number exceeds the range.
* In hardware, we discard the CarryOut of MSB.

* We can detect overflow by check sign of operands and result (MSB).

* Ex. Write the logical expression for overflow detection.
* Carryln (MSB) XOR CarryOut (MSB)

Result
Operation Operand A | Operand B indicating overflow

A+ B

A+ B <O <0 20
A-B >0 <0 <0
A-B <0 >0 >0

* Do subtraction.

* Set bit 0 to the output of MSB adder.

* Other bits to 0.

* E.g. ifa < b, 00...1, else, 00...0

* Only works if not underflow!

Ainvert

Binvert

Operation

Carryln

Y

)

Less

"
=

) jtj _/

Overflow
detection

pport Set Less Than (slt)

* Result

= Set

Overflow

Ainvert

= Result0

» Result1

Binvert
Carryln
H— |
¥ Y
a0 —»|{ Carryln
b0 — ALUQ
- Less
CarryOut
—
| l
al—{ Carryln
b1 — ALU1
0— Less
CarryOut
~—
1N
a2 —=| Carryln
b2 — ALU2
0 —= Less
CarryOut

L : © Carryln
—

a31—s=| Carryln
b31— ALU31
0— Less

> Result2

» Result31
Set

» Overflow

15

Assume 4-bit signed integer, a = —744, b = 6449, compute a — b.
Does checking the sign bit (MSB) work?
How to fix this? Ainvert Operation

uBinver't Carryln ‘
Set=XOR(MSB, Overflow) . O — A
0
Overflow checks if the sign bit flips incorrectly. ‘D ‘ 1 \ g B
r\: 1
Y * Result
T T
1 >
Les -;\3_/
» Set
Overflow = Qverflow
detection

16

Support Set Less Than (slt)

Notice overflow detection is added to the MSB ALU unit.

Updated control signal table:

Operation Ainvert Binvert Carryln Result
(LSB)
00 0 0 X a &b
00 1 1 X ~(a | b)
01 0 0 X alb
10 %) %) %) a+b
10 (%] 1 1 a-b
11 (%] 1 1 a<b

Less

Ainvert
Binvert

Operation

Carryln

Y

)

=i

]
(o)

1
—— | ¢

vy

)
>

= Result

» Set

Overflow
detection

* Qverflow

17

Need to check for a ==
Do subtraction, and check result is 0.

OR all result bits and negate.

Support Branch if Equal (beq)

Result0

.

Result1

=.> >—| >0— Zero

_—e

Result2

]

Result31 . .

18

Put Everything Together

Binvert and Carryln (LSB) can be merged Amvz‘fgate Operation
into one signal Bnegate. 3] ol t
- 0—»| Camyl
As we do not care x value in Carryln 00— ALUO | Resuto |
> Less T—
Operation Ainvert Bnegate Result CarryOut
00 0 0 a &b ? TR
00 1 1 ~(a | b) 21: C:Lrg:n Resutt | . |
0 — Less ;'
01 (% (%) a | b CarryOut : Zero
16 @ 6 a + b M Yy vy Y
a2—| Carryln
10 0 1 da - b b2 —» ALU2 Result? _
00— Less
11 0 1 a<b CarryOut
AU
L : iCarryln
by ——
a31—| Carryln Result31 4 >
b31—»| ALU31 Set
00— Less » QOverflow
19

Put Everything Together

We now support many instructions!

Arithmetic: add, sub, addi, addui, ...
Logical: and, or, ...
Compare: slt, ...

The decoder translates instructions to control signals.
|.e., ALU operation here.

ALU operation

| _*\
— Zero

> ALU |— Result

— QOverflow

b —»

CarryOut

20

Multiplication

.
:z)

* Handle as series of shift and addition.

Multiplication

* A simple implementation requires 2n-bit adder.

Multiplicand 1000, _,
Multiplier X 1001,

1000
0000
0000
1000

Product

-

Multiplicand

Shift left

_l 164 bit

its

N
64-bit ALU

Product

Write

1001000,

64 bits

 —

Multiplier
Shift right

32 bits

Control test)

22

Require only 32-bit adder.

Store product and multiplier in the result register (64-bit + 1-bit carry).

-

Multiplicand

132 bits

N\

Optimized Multiplier

32-bit ALU ~
e
Product Shift rlg.ht
Write

64 bits

Control
test

23

Optimized Multiplier Example

1101, x 1001, 0000, 1101,
Initial state 1101, x 1001,
Initial state
Product Multiplier

0100|001]|0]O]1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

&

g
¥ I'\-_p

Optimized Multiplier Example

1101, x 1001, 0000, 1101,
Add Multiplicand
_l 132 bits
N/

32-bit ALU

1101,
prouct Shift right Control
Write test
64 bits
Product Multiplier

0100|001 |0O]|O]1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

&

g
¥ I'\-_p

Optimized Multiplier Example

1101, x 1001, 0000, 1101,
Write product. Multiplicand
_,I, 132 bits
_/

32-bit ALU

1101,
prouct Shift right Control
Write test
64 bits
Product Multiplier

o1 j1J0j1111}01]0)1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

._!ﬂ. -

Optimized Multiplier Example

1101, x 1001, 0000, 1101,
Shift right. Multiplicand
_l 132 bits
_/

32-bit ALU

1101,
prouct Shift right Control
Write test
64 bits
Product Multiplier

0101|101]|1T]010

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

&

g
¥ I'\-_p

Optimized Multiplier Example

1101, x 1001, 0110, 1101,
Skip as 0 multiplier Multiplicand
_l 132 bits
N/

32-bit ALU

0000,
prouct Shift right Control
Write test
64 bits
Product Multiplier

01011011010

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

._!ﬂ. -

Optimized Multiplier Example

1101, X 1001, 0110, 1101,
Shift right. Multiplicand
_l 132 bits
_/

32-bit ALU

0000,
prouct Shift right Control
Write test
64 bits
Product Multiplier

0|(0jo0j1j1]0|11j|110

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

&

g
¥ I'\-_p

Optimized Multiplier Example

1101, x 1001, 0011, 1101,
Skip as 0 multiplier Multiplicand
_l 132 bits
N/

32-bit ALU

0000,
prouct Shift right Control
Write test
64 bits
Product Multiplier

0001|101 }|1]10

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

._!ﬂ. -

Optimized Multiplier Example

1101, X 1001, 0110, 1101,
Shift right. Multiplicand
_l 132 bits
_/

32-bit ALU

0000,
prouct Shift right Control
Write test
64 bits
Product Multiplier

010|001 |1]0]1)1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

&

g
¥ I'\-_p

Optimized Multiplier Example

1101, x 1001, 0001, 1101,
Add Multiplicand
_l 132 bits
N/

32-bit ALU

1110,
prouct Shift right Control
Write test
64 bits
Product Multiplier

0(j0jO0J0j1|1]0]1)1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

&

g
¥ I'\-_p

Optimized Multiplier Example

1101, x 1001, 0001, 1101,
Write product Multiplicand
_,I, 132 bits
N/

32-bit ALU

1110,
prouct Shift right Control
Write test
64 bits
Product Multiplier

o1 11|01]0]j|1]1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

£

.‘)

el ol

I P& %)

Optimized Multiplier Example

1101, x 1001, 0001, 1101,
Shift right Multiplicand

Result: 01110101,] 13‘“’”5

_/

326t ALU

1110, | _ .
probuct Shift right Control
Write test
64 bits
Product Multiplier

0|01 1|10 }|1]0]1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

Multiply Instructions

mul performs an 32-bit x 32-bit multiplication and places the lower 32 bits in
the destination register.

mul rd, rsl, rs2

mulh, mulhu, and mulhsu perform the same multiplication but return the
upper 32 bits of the full 64-bit product, for signedxsigned, unsignedxunsigned,
and signedxunsigned multiplication respectively.

35

Division

Division

Division is just a bunch of quotient digit guesses and left shifts and subtracts.

Dividend = Quotient X Divisor + Remainder

1001 +ten Quotient

Divisor 1000+en |1001010ten Dividend
-1000

10

101

1010
-1000

1 O0ten Remainder

37

Division Hardware

—
Divisor
Shift right |<e—
l64 bits
-—
/e Quotient
64-bit ALU Shift left |-e—
32 bits
Remainder C;rol\
Write test
64 bits

FIGURE 3.8 First version of the division hardware. The Divisor register, ALU, and Remainder
register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor starts in the
left half of the Divisor register and is shifted right 1 bit each iteration. The remainder is initialized with
the dividend. Control decides when to shift the Divisor and Quotient registers and when to write the new

value into the Remainder register.

Division Example

- Divide 0111, by 0010,
M“M

Initial values 0000 0010 0000 0000 0111
1: Rem = Rem — Div 0000 0010 0000 (D110 0111
2b: Rem <0 = +Div, SLLQ,Q0 =0 0000 0010 0000 0000 0111
3: Shift Div right 0000 0001 0000 0000 0111
1: Rem = Rem - Div 0000 0001 0000 D111 0111
2b: Rem < 0 => +Div, SLLQ, Q0 =0 0000 0001 0000 0000 0111
3: Shift Div right 0000 0000 1000 0000 0111
1: Rem = Rem - Div 0000 0000 1000 (D111 1111
2b: Rem < 0 = +Div, SLLQ, Q0 =0 0000 0000 1000 0000 0111
3: Shift Div right 0000 0000 0100 0000 0111
1: Rem = Rem - Div 0000 0000 0100 0000 0011
2a: Rem>0=SLLQ,Q0=1 0001 0000 0100 0000 0011
3: Shift Div right 0001 0000 0010 0000 0011
1: Rem = Rem - Div 0001 0000 0010 ©000 0001
2a: Rem>0=SLLQ,Q0=1 0011 0000 0010 0000 0001
3: Shift Div right 0011 0000 0001 0000 0001

39

Division Instruction

div perform a 32 bits by 32 bits signed integer division of rsl1 by rs2, rounding
towards zero.

div rd, rsl, rs2

div and divu perform signed and unsigned integer division of 32 bits by 32 bits.

rem and remu provide the remainder of the corresponding division operation.

40

	Default Section
	Slide 1: CENG 3420 Computer Organization & Design Lecture 06: ALU

	Overview
	Slide 2: Overview
	Slide 3: Processor Overview
	Slide 4: Arithmetic-Logic Unit (ALU)

	Addition Unit
	Slide 5: Addition Unit
	Slide 6: 1-bit Full Adder
	Slide 7: 1-bit Full Adder in Logical Gates
	Slide 8: Support Logical Operation
	Slide 9: Support 32-bit Operand
	Slide 10: Glitch
	Slide 11: Carry Look-ahead Adder
	Slide 12: Support Subtraction
	Slide 13: Support NOR
	Slide 14: Detect Overflow
	Slide 15: Support Set Less Than (slt)
	Slide 16: Exercise: Handling Underflow for slt
	Slide 17: Support Set Less Than (slt)
	Slide 18: Support Branch if Equal (beq)
	Slide 19: Put Everything Together
	Slide 20: Put Everything Together

	Multiplication
	Slide 21: Multiplication
	Slide 22: Multiplication
	Slide 23: Optimized Multiplier
	Slide 24: Optimized Multiplier Example
	Slide 25: Optimized Multiplier Example
	Slide 26: Optimized Multiplier Example
	Slide 27: Optimized Multiplier Example
	Slide 28: Optimized Multiplier Example
	Slide 29: Optimized Multiplier Example
	Slide 30: Optimized Multiplier Example
	Slide 31: Optimized Multiplier Example
	Slide 32: Optimized Multiplier Example
	Slide 33: Optimized Multiplier Example
	Slide 34: Optimized Multiplier Example
	Slide 35: Multiply Instructions

	Division
	Slide 36: Division
	Slide 37: Division
	Slide 38: Division Hardware
	Slide 39: Division Example
	Slide 40: Division Instruction

