
CENG 3420
Computer Organization & Design
Lecture 06: ALU
Textbook: Chapter 3.2-3.4 & A.5-A.6

Zhengrong Wang

CSE Department, CUHK

zhengrongwang@cuhk.edu.hk

1

Overview

2

Processor Overview

3

Arithmetic-Logic Unit (ALU)

• We have seen the abstraction.
• Instruction set architecture (ISA).

• Machine code and instructions.

• Next: we will design the arithmetic-logic unit (ALU).
• All instructions need to use the ALU.

• E.g., add two numbers, calculate the address.

• Let’s start with addition.

4

Addition Unit

5

1-bit Full Adder

• Sum = a XOR b XOR CarryIn

• CarryOut = (a AND b) OR (a AND CarryIn) OR (b AND CarryIn)

• How to implement it in logical gates?

6

1-bit Full Adder in Logical Gates

• Sum = (a XOR b) XOR CarryIn

• CarryOut = (a AND b) OR (a AND CarryIn) OR (b AND CarryIn)

• CarryOut = (a AND b) OR ((a OR b) AND CarryIn)

• We can replace OR with XOR because (a AND b) already handles the case a=b=1

• CarryOut = (a AND b) OR ((a XOR b) AND CarryIn)

• So that we can reuse (a XOR b) from Sum.

7

reused (a XOR b)

Support Logical Operation

• Add AND/OR and select the output based on instruction opcode/funct.

• This is a 1-bit ALU with AND/OR/ADD operation.

• How to support 32-bit operand?

8

Operation Result

00 a & b

01 a | b

10 a + b

Support 32-bit Operand

• Concatenate 32 1-bit ALUs.

• Ripple carry adder.
• CarryOut → CarryIn

• Pro: Simple, low hardware cost.

• Con: Long latency, glitch, high energy consumption.

9

Glitch

• A brief, unintended signal spike or transition that deviates from the expected
output due to timing mismatches or propagation delays.
• Increase energy consumption.

• May cause error in next stage.

• In ripple-carry ALU, long propagation for the carry.

• How can we improve it?

10

Carry Look-ahead Adder

• Ripple carry adder: carry propagates one-by-one, O(n).

• Rewrite carry logic with notation OR → +, AND → ⋅
• Generate: whether a carry is generated at i-th bit: 𝐺𝑖 = 𝑎𝑖 ⋅ 𝑏𝑖

• Propagate: whether a carry would be propagated at i-th bit: 𝑃𝑖 = 𝑎𝑖 + 𝑏𝑖

• Carry at i-th bit is: 𝐶𝑖 = 𝐺𝑖 + 𝑃𝑖 ⋅ 𝐶𝑖−1
• Either generated or propagated.

• Expand this:

𝐶𝑖 = 𝐺𝑖 + 𝑃𝑖 ⋅ 𝐶𝑖−1 = 𝐺𝑖 + 𝑃𝑖 ⋅ 𝐺𝑖−1 + 𝑃𝑖−1 ⋅ 𝐶𝑖−2

= 𝐺𝑖 + 𝑃𝑖 ⋅ 𝐺𝑖−1 + … + 𝑃𝑖 ⋅ … ⋅ 𝑃2 ⋅ 𝑃1 ⋅ 𝑃0 ⋅ 𝐶𝑖𝑛

• The trick: 𝑃𝑖 and 𝐺𝑖 can be computed in parallel (O(1)).

• Therefore: chain of 𝑃𝑖 ⋅ … ⋅⋅ 𝑃0 ⋅ 𝐶𝑖𝑛 can be computed with tree (O(log(n))).

• Used more gates, but less latency and glitch.

11

Support Subtraction

• Remember two’s complement: −𝑥 = ҧ𝑥 + 1

• 𝑎 − 𝑏 = 𝑎 + −𝑏 = 𝑎 + ത𝑏 + 1

• Subtract is implement as:
• Inverting b.

• Setting CarryIn to 1 for bit 0 (LSB).

• Control signal table (x is don’t care).

12

Operation Binvert CarryIn (LSB) Result

00 0 x a & b

01 0 x a | b

10 0 0 a + b

10 1 1 a - b

Support NOR

• a NOR b = NOT (a OR b) = (NOT a) AND (NOT b)

• Invert a and b, then AND.

13

Operation Ainvert Binvert CarryIn
(LSB)

Result

00 0 0 x a & b

00 1 1 x ~(a | b)

01 0 0 x a | b

10 0 0 0 a + b

10 0 1 1 a - b

Detect Overflow

• We have limited hardware to represent integers (here 32-bit).

• Overflow: result can not be presented by hardware.
• E.g., add two large positive/negative number exceeds the range.

• In hardware, we discard the CarryOut of MSB.

• We can detect overflow by check sign of operands and result (MSB).

• Ex. Write the logical expression for overflow detection.
• CarryIn (MSB) XOR CarryOut (MSB)

14

Support Set Less Than (slt)

• Do subtraction.

• Set bit 0 to the output of MSB adder.

• Other bits to 0.
• E.g. if a < b, 00…1, else, 00…0

• Only works if not underflow!

15

Exercise: Handling Underflow for slt

• Assume 4-bit signed integer, a = −710, b = 610, compute a – b.

• Does checking the sign bit (MSB) work?

• How to fix this?

• Set=XOR(MSB, Overflow)
• Overflow checks if the sign bit flips incorrectly.

16

Support Set Less Than (slt)

• Notice overflow detection is added to the MSB ALU unit.

• Updated control signal table:

17

Operation Ainvert Binvert CarryIn
(LSB)

Result

00 0 0 x a & b

00 1 1 x ~(a | b)

01 0 0 x a | b

10 0 0 0 a + b

10 0 1 1 a - b

11 0 1 1 a < b

Support Branch if Equal (beq)

• Need to check for a == b.

• Do subtraction, and check result is 0.

• OR all result bits and negate.

18

Put Everything Together

• Binvert and CarryIn (LSB) can be merged
into one signal Bnegate.

• As we do not care x value in CarryIn

19

Operation Ainvert Bnegate Result

00 0 0 a & b

00 1 1 ~(a | b)

01 0 0 a | b

10 0 0 a + b

10 0 1 a - b

11 0 1 a < b

Put Everything Together

• We now support many instructions!
• Arithmetic: add, sub, addi, addui, …

• Logical: and, or, …

• Compare: slt, …

• The decoder translates instructions to control signals.
• I.e., ALU operation here.

20

Multiplication

21

Multiplication

• Handle as series of shift and addition.

• A simple implementation requires 2n-bit adder.

22

Optimized Multiplier

• Require only 32-bit adder.

• Store product and multiplier in the result register (64-bit + 1-bit carry).

23

Optimized Multiplier Example

• 11012 × 10012

• Initial state

24

11012

Product Multiplier

0 0 0 0 0 1 0 0 1

00002

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

Optimized Multiplier Example

• 11012 × 10012

• Add

25

1101200002

11012

Product Multiplier

0 0 0 0 0 1 0 0 1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

Optimized Multiplier Example

• 11012 × 10012

• Write product.

26

1101200002

11012

Product Multiplier

0 1 1 0 1 1 0 0 1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

Optimized Multiplier Example

• 11012 × 10012

• Shift right.

27

1101200002

11012

Product Multiplier

0 0 1 1 0 1 1 0 0

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

Optimized Multiplier Example

• 11012 × 10012

• Skip as 0 multiplier

28

1101201102

00002

Product Multiplier

0 0 1 1 0 1 1 0 0

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

Optimized Multiplier Example

• 11012 × 10012

• Shift right.

29

1101201102

00002

Product Multiplier

0 0 0 1 1 0 1 1 0

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

Optimized Multiplier Example

• 11012 × 10012

• Skip as 0 multiplier

30

1101200112

00002

Product Multiplier

0 0 0 1 1 0 1 1 0

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

Optimized Multiplier Example

• 11012 × 10012

• Shift right.

31

1101201102

00002

Product Multiplier

0 0 0 0 1 1 0 1 1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

Optimized Multiplier Example

• 11012 × 10012

• Add

32

1101200012

11102

Product Multiplier

0 0 0 0 1 1 0 1 1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

Optimized Multiplier Example

• 11012 × 10012

• Write product

33

1101200012

11102

Product Multiplier

0 1 1 1 0 1 0 1 1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

Optimized Multiplier Example

• 11012 × 10012

• Shift right

• Result: 011101012

34

1101200012

11102

Product Multiplier

0 0 1 1 1 0 1 0 1

Notice the color separates Product and Multiplier,
which is shifted right every iteration.

Multiply Instructions

• mul performs an 32-bit × 32-bit multiplication and places the lower 32 bits in
the destination register.
• mul rd, rs1, rs2

• mulh, mulhu, and mulhsu perform the same multiplication but return the
upper 32 bits of the full 64-bit product, for signed×signed, unsigned×unsigned,
and signed×unsigned multiplication respectively.

35

Division

36

Division

• Division is just a bunch of quotient digit guesses and left shifts and subtracts.

𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 = 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 × 𝐷𝑖𝑣𝑖𝑠𝑜𝑟 + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

37

Division Hardware

38

Division Example

• Divide 01112 by 00102

39

Division Instruction

• div perform a 32 bits by 32 bits signed integer division of rs1 by rs2, rounding
towards zero.
• div rd, rs1, rs2

• div and divu perform signed and unsigned integer division of 32 bits by 32 bits.

• rem and remu provide the remainder of the corresponding division operation.

40

	Default Section
	Slide 1: CENG 3420 Computer Organization & Design Lecture 06: ALU

	Overview
	Slide 2: Overview
	Slide 3: Processor Overview
	Slide 4: Arithmetic-Logic Unit (ALU)

	Addition Unit
	Slide 5: Addition Unit
	Slide 6: 1-bit Full Adder
	Slide 7: 1-bit Full Adder in Logical Gates
	Slide 8: Support Logical Operation
	Slide 9: Support 32-bit Operand
	Slide 10: Glitch
	Slide 11: Carry Look-ahead Adder
	Slide 12: Support Subtraction
	Slide 13: Support NOR
	Slide 14: Detect Overflow
	Slide 15: Support Set Less Than (slt)
	Slide 16: Exercise: Handling Underflow for slt
	Slide 17: Support Set Less Than (slt)
	Slide 18: Support Branch if Equal (beq)
	Slide 19: Put Everything Together
	Slide 20: Put Everything Together

	Multiplication
	Slide 21: Multiplication
	Slide 22: Multiplication
	Slide 23: Optimized Multiplier
	Slide 24: Optimized Multiplier Example
	Slide 25: Optimized Multiplier Example
	Slide 26: Optimized Multiplier Example
	Slide 27: Optimized Multiplier Example
	Slide 28: Optimized Multiplier Example
	Slide 29: Optimized Multiplier Example
	Slide 30: Optimized Multiplier Example
	Slide 31: Optimized Multiplier Example
	Slide 32: Optimized Multiplier Example
	Slide 33: Optimized Multiplier Example
	Slide 34: Optimized Multiplier Example
	Slide 35: Multiply Instructions

	Division
	Slide 36: Division
	Slide 37: Division
	Slide 38: Division Hardware
	Slide 39: Division Example
	Slide 40: Division Instruction

