

CENG 3420

Computer Organization & Design

Lecture 07: Floating Point

Textbook: Chapter 3.5

Zhengrong Wang

CSE Department, CUHK

zhengrongwang@cuhk.edu.hk

Float Num

Scientific Notation

- To represent 123.456 as 1.23456×10^2
 - A normalized number of certain accuracy (1.23456 is called **mantissa**).
 - Scale factors to determine the position of the decimal point (10^2 indicates position of decimal point and is called the **exponent**; the **base** is implied).
 - **Sign** bit.

Normalized Form

- Scientific notation can have more than one way to write:

$$123.456 = 1.23456 \times 10^2 = 12.3456 \times 10^1 = 0.123456 \times 10^3$$

- The decimal point is moving – **Floating** point number.
- We prefer **normalized form**: mantissa within range $[1, \text{Base})$
 - For decimal, $[1, 10)$
 - For binary, $[1, 2)$

IEEE Standard 754 Single Precision

- 32-bit, float in C/C++/Java.

- 1-bit sign **S**.
- 8-bit signed exponent **E** – 127.
- 23-bit mantissa **M**.

$$(-1)^S(1.M) \times 2^{E-127}$$

- Example: $-3 = -1.5 \times 2^1 = -1.1_2 \times 2^1$

- $S = 1$.
- $E = 128$.
- $M = 1$.

IEEE Standard 754 Double Precision

- 64-bit, double in C/C++/Java
 - 1-bit Sign.
 - 11-bit Exponent: E – 1023.
 - 52-bit Mantissa M.

$$(-1)^s(1.M) \times 2^{E-1023}$$

Exercise

- How to represent $40C00000_{16}$ in float?
- How to represent -0.5_{10} in float?

Special Values

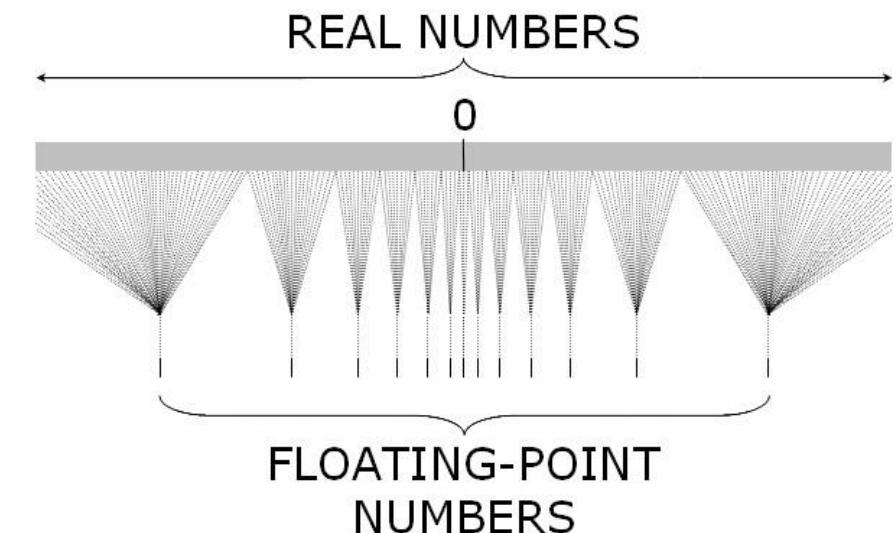
- Exponents of all 0's and all 1's have special meaning:
 - $E = 0, M = 0$ represents 0 (sign bit still used so there is ± 0).
 - $E = 0, M \neq 0$ is a denormalized number $\pm(0.M) \times 2^{-126}$ (smaller than the smallest normalized number).
 - $E = All\ 1s, M = 0$ represents $\pm\text{Infinity}$, depending on Sign.
 - $E = All\ 1s, M \neq 0$ represents **NaN** (Not a Number).

Approximation of Floating Point Number

- Float point number approximates real number.
 - We only have 32-bit/64-bit.
- This causes precision loss for computation!
- E.g., 0.3 can not be precisely represent in binary.

```
# Python terminal:
```

```
>>> format(0.3, ".55f")
'0.299999999999999888977697537484345957636833190917968750'
>>> format(0.5, ".55f")
'0.500000000000000000000000000000000000000000000000000000000000000'
```



Rounding

- IEEE standard 754 defined 4 rounding modes:
 - Round up to $+\infty$.
 - Round down to $-\infty$.
 - Truncate (get rid of extra mantissa bits \rightarrow round to zero).
 - Round to closet even (default mode for C/C++).
- Round to closet even to **break the tie of 0.5**.
 - E.g., we only have 3 digit of mantissa, $3.555 \rightarrow 3.56$, $3.445 \rightarrow 3.44$.
- Fun fact: U.S. Internal Revenue Service (IRS) always round up 0.5 to 1.
 - To collect more tax!
- Hong Kong Inland Revenue Department (IRD) always round down to HK\$1.
 - Even if you have HK\$1.99 $\rightarrow 1$:)
- **This is not financial advice...**

Floating Point in AI

- Today large language models (LLM) have billions of parameters.
 - E.g., DeepSeek V3 has **671 billion** parameters. ChatGPT-5 is similar.
- Huge cost to perform double/single precision on big models:
 - Higher memory storage to store the parameters.
 - Longer latency to load parameters from memory to registers.
 - Longer computation time.
 - High energy cost → Big AI companies are building in-house power station.
- AI does not need high precision floating point! → **Quantization**
 - From 32-bit to 16-bit, 2x speedup without performance loss.
 - DeepSeek-V3 is first to deploy **8-bit training and inference**.

Quantization in AI

- Many quantization formats for AI.

Format	Bit Width	Structure (S/E/M)	Use Cases
FP64	64 bits	1/11/52	Scientific computing, simulations
FP32	32 bits	1/8/23	General-purpose computing, DL training
TF32	32 bits	1/8/10 (stored in 32 bits)	NVIDIA AI training (Ampere Tensor Cores)
BF16	16 bits	1/8/7	TPU/GPU training and inference
FP16	16 bits	1/5/10	Mobile inference, memory-efficient DL
FP8	8 bits	E4M3 or E5M2	Quantized neural nets, edge inference
MXFP4	4 bits	Vendor-specific (~1/2/1)	Ultra-low-power experimental AI inference

- Try to ask ChatGPT what is its bit width :)
- Choose the precision based on application.
 - E.g., high precision for chemical simulation, low precision for AI inference.