
CENG 3420
Computer Organization & Design
Lecture 07: Floating Point
Textbook: Chapter 3.5

Zhengrong Wang

CSE Department, CUHK

zhengrongwang@cuhk.edu.hk

1

Float Num

2

Scientific Notation

• To represent 123.456 as 1.23456 × 102

• A normalized number of certain accuracy (1.23456 is called mantissa).

• Scale factors to determine the position of the decimal point (102 indicates position of
decimal point and is called the exponent; the base is implied).

• Sign bit.

3

Normalized Form

• Scientific notation can have more than one way to write:
123.456 = 1.23456 × 102 = 12.3456 × 101 = 0.123456 × 103

• The decimal point is moving – Floating point number.

• We prefer normalized form: mantissa within range 1, 𝐵𝑎𝑠𝑒
• For decimal, 1, 10

• For binary, 1, 2

4

IEEE Standard 754 Single Precision

• 32-bit, float in C/C++/Java.

• 1-bit sign S.

• 8-bit signed exponent E – 127.

• 23-bit mantissa M.
−1 𝑆 1. 𝑀 × 2𝐸−127

• Example: −3 = −1.5 × 21 = −1.12 × 21

• S = 1.

• E = 128.

• M = 1.

5

S E (8-bit) M (23-bit)

1 1 0 0 0 0 0 0 0 1 0

IEEE Standard 754 Double Precision

• 64-bit, double in C/C++/Java
• 1-bit Sign.

• 11-bit Exponent: E – 1023.

• 52-bit Mantissa M.

−1 𝑆 1. 𝑀 × 2𝐸−1023

6

Exercise

• How to represent 40𝐶0000016 in float?

• How to represent −0.510 in float?

7

Special Values

• Exponents of all 0’s and all 1’s have special meaning:
• 𝐸 = 0, 𝑀 = 0 represents 0 (sign bit still used so there is ±0).

• 𝐸 = 0, 𝑀 ≠ 0 is a denormalized number ± 0. 𝑀 × 2−126 (smaller than the smallest
normalized number).

• 𝐸 = 𝐴𝑙𝑙 1𝑠, 𝑀 = 0 represents ±Infinity, depending on Sign.

• 𝐸 = 𝐴𝑙𝑙 1𝑠, 𝑀 ≠ 0 represents NaN (Not a Number).

8

Approximation of Floating Point Number

• Float point number approximates real number.
• We only have 32-bit/64-bit.

• This causes precision loss for computation!

• E.g., 0.3 can not be precisely represent in binary.

9

Python terminal:
>>> format(0.3, ".55f")
'0.2999999999999999888977697537484345957636833190917968750'
>>> format(0.5, ".55f")
'0.500'

Rounding

• IEEE standard 754 defined 4 rounding modes:
• Round up to +infinity.
• Round down to –infinity.
• Truncate (get rid of extra mantissa bits → round to zero).
• Round to closet even (default mode for C/C++).

• Round to closet even to break the tie of 0.5.
• E.g., we only have 3 digit of mantissa, 3.555 → 3.56, 3.445 → 3.44.

• Fun fact: U.S. Internal Revenue Service (IRS) always round up 0.5 to 1.
• To collect more tax!

• Hong Kong Inland Revenue Department (IRD) always round down to HK$1.
• Even if you have HK$1.99 → 1 :)

• This is not financial advice…

10

Floating Point in AI

• Today large language models (LLM) have billions of parameters.
• E.g., DeepSeek V3 has 671 billion parameters. ChatGPT-5 is similar.

• Huge cost to perform double/single precision on big models:
• Higher memory storage to store the parameters.

• Longer latency to load parameters from memory to registers.

• Longer computation time.

• High energy cost → Big AI companies are building in-house power station.

• AI does not need high precision floating point! → Quantization
• From 32-bit to 16-bit, 2x speedup without performance loss.

• DeepSeek-V3 is first to deploy 8-bit training and inference.

11

Quantization in AI

• Many quantization formats for AI.

• Try to ask ChatGPT what is its bit width :)

• Choose the precision based on application.
• E.g., high precision for chemical simulation, low precision for AI inference.

12

+----------+-----------+----------------------------+--+
| Format | Bit Width | Structure (S/E/M) | Use Cases |
+----------+-----------+----------------------------+--+
FP64	64 bits	1/11/52	Scientific computing, simulations
FP32	32 bits	1/8/23	General-purpose computing, DL training
TF32	32 bits	1/8/10 (stored in 32 bits)	NVIDIA AI training (Ampere Tensor Cores)
BF16	16 bits	1/8/7	TPU/GPU training and inference
FP16	16 bits	1/5/10	Mobile inference, memory-efficient DL
FP8	8 bits	E4M3 or E5M2	Quantized neural nets, edge inference
MXFP4	4 bits	Vendor-specific (~1/2/1)	Ultra-low-power experimental AI inference
+----------+-----------+----------------------------+--+

	Slide 1: CENG 3420 Computer Organization & Design Lecture 07: Floating Point
	Slide 2: Float Num
	Slide 3: Scientific Notation
	Slide 4: Normalized Form
	Slide 5: IEEE Standard 754 Single Precision
	Slide 6: IEEE Standard 754 Double Precision
	Slide 7: Exercise
	Slide 8: Special Values
	Slide 9: Approximation of Floating Point Number
	Slide 10: Rounding
	Slide 11: Floating Point in AI
	Slide 12: Quantization in AI

