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Float Num
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Scientific Notation

• To represent 123.456 as 1.23456 × 102

• A normalized number of certain accuracy (1.23456 is called mantissa).

• Scale factors to determine the position of the decimal point (102 indicates position of 
decimal point and is called the exponent; the base is implied).

• Sign bit.
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Normalized Form

• Scientific notation can have more than one way to write:
123.456 = 1.23456 × 102 = 12.3456 × 101 = 0.123456 × 103

• The decimal point is moving – Floating point number.

• We prefer normalized form: mantissa within range 1, 𝐵𝑎𝑠𝑒
• For decimal, 1, 10

• For binary, 1, 2
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IEEE Standard 754 Single Precision

• 32-bit, float in C/C++/Java.

• 1-bit sign S.

• 8-bit signed exponent E – 127.

• 23-bit mantissa M.
−1 𝑆 1. 𝑀 × 2𝐸−127

• Example: −3 = −1.5 × 21 = −1.12 × 21

• S = 1.

• E = 128.

• M = 1.
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S E (8-bit) M (23-bit)

1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



IEEE Standard 754 Double Precision

• 64-bit, double in C/C++/Java
• 1-bit Sign.

• 11-bit Exponent: E – 1023.

• 52-bit Mantissa M.

−1 𝑆 1. 𝑀 × 2𝐸−1023
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Exercise

• How to represent 40𝐶0000016 in float?

• How to represent −0.510 in float?

7



Special Values

• Exponents of all 0’s and all 1’s have special meaning:
• 𝐸 = 0, 𝑀 = 0 represents 0 (sign bit still used so there is ±0).

• 𝐸 = 0, 𝑀 ≠ 0 is a denormalized number ± 0. 𝑀 × 2−126  (smaller than the smallest 
normalized number).

• 𝐸 = 𝐴𝑙𝑙 1𝑠, 𝑀 = 0 represents ±Infinity, depending on Sign.

• 𝐸 = 𝐴𝑙𝑙 1𝑠, 𝑀 ≠ 0 represents NaN (Not a Number).
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Approximation of Floating Point Number

• Float point number approximates real number.
• We only have 32-bit/64-bit.

• This causes precision loss for computation!

• E.g., 0.3 can not be precisely represent in binary.
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# Python terminal:
>>> format(0.3, ".55f")
'0.2999999999999999888977697537484345957636833190917968750'
>>> format(0.5, ".55f")
'0.5000000000000000000000000000000000000000000000000000000'



Rounding

• IEEE standard 754 defined 4 rounding modes:
• Round up to +infinity.
• Round down to –infinity.
• Truncate (get rid of extra mantissa bits → round to zero).
• Round to closet even (default mode for C/C++).

• Round to closet even to break the tie of 0.5.
• E.g., we only have 3 digit of mantissa, 3.555 → 3.56, 3.445 → 3.44.

• Fun fact: U.S. Internal Revenue Service (IRS) always round up 0.5 to 1.
• To collect more tax!

• Hong Kong Inland Revenue Department (IRD) always round down to HK$1.
• Even if you have HK$1.99 → 1 : )

• This is not financial advice…

10



Floating Point in AI

• Today large language models (LLM) have billions of parameters.
• E.g., DeepSeek V3 has 671 billion parameters. ChatGPT-5 is similar.

• Huge cost to perform double/single precision on big models:
• Higher memory storage to store the parameters.

• Longer latency to load parameters from memory to registers.

• Longer computation time.

• High energy cost → Big AI companies are building in-house power station.

• AI does not need high precision floating point! → Quantization
• From 32-bit to 16-bit, 2x speedup without performance loss.

• DeepSeek-V3 is first to deploy 8-bit training and inference.
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Quantization in AI

• Many quantization formats for AI.

• Try to ask ChatGPT what is its bit width : )

• Choose the precision based on application.
• E.g., high precision for chemical simulation, low precision for AI inference.
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+----------+-----------+----------------------------+------------------------------------------+
| Format   | Bit Width | Structure (S/E/M)          | Use Cases                                |
+----------+-----------+----------------------------+------------------------------------------+
| FP64     | 64 bits   | 1/11/52                    | Scientific computing, simulations        |
| FP32     | 32 bits   | 1/8/23                     | General-purpose computing, DL training   |
| TF32     | 32 bits   | 1/8/10 (stored in 32 bits) | NVIDIA AI training (Ampere Tensor Cores) |
| BF16     | 16 bits   | 1/8/7                      | TPU/GPU training and inference           |
| FP16     | 16 bits   | 1/5/10                     | Mobile inference, memory-efficient DL    |
| FP8      | 8 bits    | E4M3 or E5M2               | Quantized neural nets, edge inference    |
| MXFP4    | 4 bits    | Vendor-specific (~1/2/1)   | Ultra-low-power experimental AI inference|
+----------+-----------+----------------------------+------------------------------------------+
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