CENG 3420

Computer Organization & Design
Lecture 08: Datapath

Textbook: Chapter 4.1-4.4
Zhengrong Wang

CSE Department, CUHK
zhengrongwang@cuhk.edu.hk

Overview

Processor Overview

Get instruction from instruction memory at PC (program counter).
Get source operands from register or immediate number in the instruction.
Perform the operation, e.g. add, load from memory, store to memory, take a branch.

Update PC to next instruction (+4 if no branch), and repeat from Step 1.

4 —-—\ g
Add N Add
L
L A
Data \
Register #
| PC (¢~ Address Instruction 4{ Registers ALU te~ Address
_ Register # Data
Instruction . e -
memory ¢ Register # I v
> Data

Implement Minimal RISC-V

Arithmetic-logic instructions: add, sub, and, or.
Memory reference instructions: lw (load word), sw (store word).
Conditional branch instruction: beq (branch if equal).

We will see how to add control signals to build datapath for these instructions!

4—»—\ -

Add Add

Y

A
|—> Data \
Register #
| PC (¢~ Address Instruction 4{ Registers ALU te~ Address
Register # Data
Instruction . e -
memory ¢>| Register # I" ry
> Data

Combinational elements operates on data value:

Outputs only depends on the current inputs.

E.g., AND gate.

State elements contains the state:
At least two inputs (new state and clock) and one output (old state).
At each clock edge (posedge or negedge), the state is updated.

Logic Design Conventions

All elements have some latency — limits the frequency of the processor.
Otherwise, state element 2 may not yet get the correct value.

State
element
1

Combinational logic

State
element
2

Clock cycle —

Y

State
element

—(Combinational logic

Simple Datapath

Instruction Fetch

Three components: PC (state), instruction memory (state), adder.

Read one instruction at PC from the instruction memory.
Increment PC by 4 bytes (32-bit) for next instruction.

Shared among all instructions.

Add

4 —

Read
address

Instruction ——

Instruction
memory

R-Type Instructions

31 25 24 20 19 15 14 12 11 76 0
funct7 rs2 rsl funct3 rd opcode R-type

Always read two registers (rs1 and rs2) and write one register (rd).

Besides fetching instructions, we need two more components.
Register file: Holds 32 32-bit value, with Reg\Write controlling whether to write.
ALU: 4-bit ALU operation to control the behavior (add, sub, etc., see Lecture 06).

5 |Read ALU operation
| register 1 A ’
g Read
—— —_—
Register) 9 |Read data 1
numbers *" | register 2 s
5 | Write Registers o Data
*y .
L register Read
: data 2
Data { — \[/)V;g 7

RegWrite

imm/[11:0]

rsl

funct3

rd

opcode

imm|[11:5]

rs2

rsl

funct3

imm [4:0]

opcode

Load and store operations
Sign-extend 12-bit imm to 32-bit offset, compute address = base (in rsl) + offset.
For load, rd = memory[address]|; For store, memory[address| = rs2.

Memory Load and Store Instructions

I-type

S-type

Besides ALU for address generation, we need two more components:
Immediate generation unit (Imm Gen) for sign-extension.

Data memory unit with read and write support.

‘ MemWrite

Address

Write
data

Read
data

Data
memory

MemRead

Branch Instruction

rs2 rsl

imm|[10:5]

imm|[12]

funct3

imm [4:1]

imm|11]

opcode

Branch if equal (beq) :
Jump if rsl equals rs2.
Target address = PC + offset.
Offset from sign-extension of imm to 32-bit.
Note: offset is encoded in factor of 2,
i.e., imm[0] = 0 —» PC always aligns to 2-byte.

Instruction !

Portion of the datapath for beq instruction

Imm Gen for sign-extension.

Register file for two compared operands.
ALU to test equality.

Separate adder to compute target address.

PCfrom instruction datapath —

Read

register 1

Read

register 2

Write
register

Write
data

Registers

Read

data 1

Read

data 2

RegWrite

Imm

Gen

B-type

Branch

Add Sum target

.| ALU operation

To branch
control logic

10

Shared Datapath

Instructions share many components in their datapath.

They all use the ALU for some operation.
They all need PC and instruction memory.

They perform sign-extension on the immediate (except R-type instructions).

E

We want to reuse components in their datapath.
Save hardware resources on area and power.
Increase hardware utilization.

But we need to coordinate shared components.
E.g., 4-bit ALU op to dictate what operation the ALU to perform.

Essentially multiplexors to select value based on the control signal. B

sel

11

MemWrite

Address

Write
data

Read

Y

data

Y

Data
memory

> Re?d ALU operation
register 1 Read
Read data 1
Instruction | register 2 ALUSrc
Registers p, 4
Write —»
*—
register data 2
| Write >
data
RegWrite g
Imm

Gen

MemRead

Combine R-Type and Memory Instructions

MemtoReg

1
M
u
X

0

12

Select operand2 from
register file or immediate. Control ALU operation.

Read
register 1

Y

Read

Instruction | register 2

Write
register

*—

Write

Read
data 1

Registers p, 4

data 2

Set to 1 for Load and Store.

ALU operation

data
RegWrite

Enable write to register.
Set to 1 for R-Type and Store.

Imm
Gen

Combine R-Type and Memory Instructions

Enable write into memory.
Set to 1 for Store.

ALUSrc
o . Address
»| Write
data

MemWrite
MemtoReg
Read (7
data - M
u
X
";\0
Data Select the value to be
memory| | written into register file.
Set to 1 for Load.

Enable read from memory.

Set to 1 for Load.

MemRead

13

Y

PCSrc

Y

Add Sum

ALUSrc

Add
4 —»
'Y
Read
Read .
PC address register 1 Read
Read data 1
Instruction register 2
Registers
Write 9 Read
Instruction register data 2
memory
Write
data
RegWrite
Imm
Gen

Y

xc=s

4 ALU operation

Read

Address data

Write Data

data memory

MemRead

Select the PC for next
instruction (4+4 or Branch).
Set to 1 if branch taken.

MemWrite

MemtoReg

14

Control Unit

How to Generate Control Signals?

Select operand2 from
register file or immediate.

Set to 1 for Load and Store. e Select the PC for next
- \ R instruction (+4 or Branch).
M Set to 1 if branch taken.
Add . u
X
4 —» \ Add Sum
. Control ALU
! \ // operation. L
— Enable write into memory.
ea ALUSrc ALU operation
Read - 4 / 1]c r r
> PC (> s register 1 Read L ‘ Ve Wi Set to or Store.
Regd data 1 MemtoReg
Instruction register 2
Write Registers reag [, Address R:jeatd
Instruction register data 2 ata
memory
Write
| data
‘ | Write Data
RegWrite " | dat memo
/ ’ . Y Select the value to be
Enable write to register. e [tom /,MemRead\ written into register file.
Set to 1 for R-Type and Store. Gen Set to 1 for Load.

Enable read from memory.
Set to 1 for Load. | 16

Detailed Meaning of Control Signals

* The main control unit need to set these based on instruction opcode/funct.

Effect when deasserted Effect when asserted

RegWrite None. The register on the Write register input is
written with the value on the Write data input.
ALUSrc The second ALU operand comes The second ALU operand is the sign-extended,

from the second register file output | 12 bits of the instruction.
(Read data 2).

PCSrc The PC is replaced by the output of | The PC is replaced by the output of the adder
the adder that computes the value | that computes the branch target.
of PC + 4.

MemRead None. Data memory contents designated by the
address input are put on the Read data
output.

MemWrite None. Data memory contents designated by the

address input are replaced by the value on
the Write data input.

MemtoReg The value fed to the register Write | The value fed to the register Write data input
data input comes from the ALU. comes from the data memory.

Two-Level Control Logic for ALU

* Two-level control logic: main control unit = ALU control unit - ALU.
* Main control unit generates 2-bit ALUOp based on instruction type.
* ALU control unit generates 4-bit ALU control based on ALUOp and funct.

* Simplifies hardware complexity — less latency — higher frequency.

* Main control unit only checks opcode field.

* ALU control unit only checks funct7 and func3 for R-type.

Instruction Desired ALU control
opcode Operation ALU action input

load word XXXXXXX 0010
SW 00 store word XXXXXXX XXX add 0010
beq 01 branch if equal XXXXXXX XXX subtract 0110
R-type 10 add 0000000 000 add 0010
R-type 10 sub 0100000 000 subtract 0110
R-type 10 and 0000000 111 AND 0000
R-type 10 or 0000000 110 OR 0001

Observation on Instruction Format

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct7 rs2 rsl funct3 rd opcode | R-type
imm/[11:0] rsl funct3 rd opcode | I-type
imm/[11:5] rs2 rsl funct3 imm|[4:0] opcode | S-type
imm[12] | imm[10:5] rs2 rsl funct3 |imm|4:1] | imm[11] | opcode | B-type

The opcode field is always in bits 6:0. Depending on the opcode, the funct3 field (bits 14:12)
and funct? field (bits 31:25) serve as an extended opcode field.

The first register operand is always in bit positions 19:15 (rsl) for R-type and branch
instructions. This field also specifies the base register for load and store instructions.

The second register operand is always in bit positions 24:20 (rs2) for R-type and branch
instructions. This field also specifies the register operand that gets copied to memory for store.

Another operand can also be a 12-bit offset for branch or load-store instructions.

The destination register is always in bit positions 11:7 (rd) for R-type and load instructions.

19

Simple Datapath with Control Unit

Main control unit.

ALU control.
2-bit ALUOp.

A J

Y

T~

=

4-bit ALU control.

Other control signals are 1-bit.

PC

Read
address

Instruction
[31-0]

Instruction
memory

* Let's see some examples.

f
|

Instruction [6-0]

\
Y

Instruction [19-15]

/\

\ Branch

Y

Add Sum

/

\ MemRead

= xeg= <

| MemtoReg

> Control; ALUOp

| MemWrite

| ALUSrc

. / :
__~ RegWrite

Instruction [24-20]

-

%Instruction [11-7]

. | Read
register 1 Rgaq
Read data 1
register 2
Write Read
register data 2
Write

Instruction [31-0]

data Registers

Y

Zero
ALU p |y

Instruction [30,14-12]

Read

~(0 Address —("1

M result data M

u u

el 0
_| write Data
> qata Memory

/ \\'\

[ALU |

'iontrol:)_

| 20

* Black line — selected data. . .
. — unselected data. Add J T~
4 —»)Add Sump——| 1
* ALUOp = 10 (R-type) N o
_ I MemRead
° ALUCOntr()l = 0010 (add) Instruction [6-0] | ||‘v'1z[mo(§eg
|l’.:cznntrcml| ALUOD
* ALUSrc =0 \ [MemWrite
| ALUSrc
2 gperand from rs2. \ [Regwiie
, — 1
° MemtOReg — O oy ‘Instructlon [19-15] .| Read
| PC (o> register 1 paag
. Result from ALU address Instruction [24-20] | .~ data 1 -
Instruction{ | register 2 0 ALU Zero 0
- 31-0 : . ALU i Read
’ Regwrlte =1 InstrtEctior! notucton A, E:gitgte,r dl:vtaaag '(% result Address Jait;_‘“}dl
* Write to rd. memory Write L Ix[L— x
data Registers ! Write Data
* Others =0 —~ — ™ 4atg Memory
* Not load/store/branch. Instruction [31-0] [1mm | ,.f/ALU
\>/ 0010
— 10 N4
Instruction [30,14-12]
21

Example: Load Instruction

Black line — selected data. ,

. — unselected data. > Add

4 — Add Sum——

]
- xg= ©

\

ALUOp = OO (lW/SW) Branch
\ MemRead
¢ ALUCO”tI’Ol = OO].O (add) Instruction [6_0]'; Control:. ESSW(;ODRGQ
| MemWrite
« ALUSrc =1 | ALUSrc
/__RegWrite
o nd 1 1
2 operand from imm. e Instruction [19-15] [Read
| PC ca ? ™| register 1
* MemRead =1 *"| address Instruction [24—20] dead -
»| Read ; 1 Zero
° Instruction register
To read from memory [31-0] %lnstmction [11-7] Write Read [I & AL ALY Address o (1
Instruction ™| register data? M resutt aa 'l\;'
* MemtoReg =1 memory e urtl x
* Result from memory — Regstor | Wite omery
ala
. RegWrite =1 Instruction [31-0] _ﬁm\ ALU
. | Gen
* Write to rd. UOO contrel; 0010
Instruction [30,14-12]

Example: Branch Instruction

Black line — selected data. \
. — unselected data. »Add
4— >Add Sum

ALUO - 01 b ranc 1
p (eq)) f/\ aemF?ead
ALUCOITU’O| = 0110 (SUb) Instruction [6-0]

| MemtoReg
=|Control
\

L

A 4

uy

ALUOp

MemWrite

Branch =1 vl ALUSrc
. RegWrite

* And with zero. 0

Instruction [19-15] Read
? | register 1 paag

. L PClés Read
¢ Ple u pd ate PC . address Instruction [24-20] data 1 g

Y

~| Read Zero
Instruction register 2 0 >ALU
[B1=01 T instruction [11-7] | write Read (0 réﬂ\sLuLl‘i Addresslz‘;je;g
Instruction ™| register data 2 M /
memory u

Write]

data Registers

| write Data
>| 4ata Memory

Oxe=z—

Instruction [31-0]

ALU

control 0 1 10

10

Instruction [30,14-12]

* What sw does

* Extend imm to offset.

* Add offset with rsl.
* Write rs2 to memory.

* What are the signals?

Exercise: Show Control Signals of Store

-

PC

Instruction [6-0]

/ \
|I \

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [19-15]

» Control

/N

Branch

\ MemRead

| MemtoReg

[ALUOp

I." MemWrite

\ / ALUSrc

/ RegWrite
A

Read

Instruction [24-20]

register 1 Read

)

Instruction [11-7]

»| Read datat
register 2

Write Read

register data 2

Write

Instruction [31-0]

Y

data Registers

—‘x:ga‘

ALU Ay

/

Zero

result

[

Instruction [30,14-12]

11|

_\
[ALU |
control:)_
_/

Address

Write
data

Read
data

Data
memory

Oxe=—

ALUOp = 00 (lw/sw)
ALUControl = 0010 (add)
ALUSrc =1

2 gperand from imm.

MemWrite = 1
* Write to memory

Exercise: Show Control Signals of Store

-

PC re»

Instruction [6-0]

/N

/
|

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [19-15]

\

A\

» Control

0

\ Branch

\ MemRead

| MemtoReg

[ALUOp

I." MemWrite

/ ALUSrc

\ / RegWrite
e

_| Read

Instruction [24-20]

" | register 1 Read

Instruction [11-7]

)

Instruction [31-0]

Y

Read data 1

register 2

Write
register

Write
data Registers

Read
data 2

Instruction [30,14-12]

" 1
Zero 0
. L 5Ly ALU Read| /]
> ?“ result Address jata [M
u u
¥ 0
1
Write Data
— > data memory
/ '\JO
[ALU |
'Qontrol:,. 010 0
| 25

Summarize Main Control Unit

* Generate control signals based on instruction opcode (bit 0-6).

* Final truth table of main control unit:

Input or
output Signal name R-format

Inputs I[6] 0 0 1
I[5] 1 0 1 1

I[4] 1 0 0 0

I[3] 0 0 0 0

I[2] 0 0 0 0

I[1] 1 1 1 1

I[O] 1 1 1 1

Outputs ALUSrc 0 1 1 0
MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOpO 0 0 0 1

	Default Section
	Slide 1: CENG 3420 Computer Organization & Design Lecture 08: Datapath

	Overview
	Slide 2: Overview
	Slide 3: Processor Overview
	Slide 4: Implement Minimal RISC-V
	Slide 5: Logic Design Conventions

	Simple Datapath
	Slide 6: Simple Datapath
	Slide 7: Instruction Fetch
	Slide 8: R-Type Instructions
	Slide 9: Memory Load and Store Instructions
	Slide 10: Branch Instruction
	Slide 11: Shared Datapath
	Slide 12: Combine R-Type and Memory Instructions
	Slide 13: Combine R-Type and Memory Instructions
	Slide 14: Add Branch Datapath

	Control Unit
	Slide 15: Control Unit
	Slide 16: How to Generate Control Signals?
	Slide 17: Detailed Meaning of Control Signals
	Slide 18: Two-Level Control Logic for ALU
	Slide 19: Observation on Instruction Format
	Slide 20: Simple Datapath with Control Unit
	Slide 21: Example: R-Type of add x1, x2, x3
	Slide 22: Example: Load Instruction
	Slide 23: Example: Branch Instruction
	Slide 24: Exercise: Show Control Signals of Store
	Slide 25: Exercise: Show Control Signals of Store
	Slide 26: Summarize Main Control Unit

