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Overview



Processor Overview

Get instruction from instruction memory at PC (program counter).
Get source operands from register or immediate number in the instruction.
Perform the operation, e.g. add, load from memory, store to memory, take a branch.

Update PC to next instruction (+4 if no branch), and repeat from Step 1.
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Implement Minimal RISC-V

Arithmetic-logic instructions: add, sub, and, or.
Memory reference instructions: lw (load word), sw (store word).
Conditional branch instruction: beq (branch if equal).

We will see how to add control signals to build datapath for these instructions!
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Combinational elements operates on data value:

Outputs only depends on the current inputs.

E.g., AND gate.

State elements contains the state:
At least two inputs (new state and clock) and one output (old state).
At each clock edge (posedge or negedge), the state is updated.

Logic Design Conventions

All elements have some latency — limits the frequency of the processor.
Otherwise, state element 2 may not yet get the correct value.
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Simple Datapath



Instruction Fetch

Three components: PC (state), instruction memory (state), adder.

Read one instruction at PC from the instruction memory.
Increment PC by 4 bytes (32-bit) for next instruction.

Shared among all instructions.
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R-Type Instructions

31 25 24 20 19 15 14 12 11 76 0
funct7 rs2 rsl funct3 rd opcode R-type

Always read two registers (rs1 and rs2) and write one register (rd).

Besides fetching instructions, we need two more components.
Register file: Holds 32 32-bit value, with Reg\Write controlling whether to write.
ALU: 4-bit ALU operation to control the behavior (add, sub, etc., see Lecture 06).
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imm/[11:0]

rsl

funct3

rd

opcode

imm|[11:5]

rs2

rsl

funct3

imm [4:0]

opcode

Load and store operations
Sign-extend 12-bit imm to 32-bit offset, compute address = base (in rsl) + offset.
For load, rd = memory[address]|; For store, memory[address| = rs2.

Memory Load and Store Instructions

I-type

S-type

Besides ALU for address generation, we need two more components:
Immediate generation unit (Imm Gen) for sign-extension.

Data memory unit with read and write support.
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Branch Instruction

rs2 rsl

imm|[10:5]

imm|[12]

funct3

imm [4:1]

imm|11]

opcode

Branch if equal (beq) :
Jump if rsl equals rs2.
Target address = PC + offset.
Offset from sign-extension of imm to 32-bit.
Note: offset is encoded in factor of 2,
i.e., imm[0] = 0 —» PC always aligns to 2-byte.

Instruction !

Portion of the datapath for beq instruction

Imm Gen for sign-extension.

Register file for two compared operands.
ALU to test equality.

Separate adder to compute target address.
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Shared Datapath

Instructions share many components in their datapath.

They all use the ALU for some operation.
They all need PC and instruction memory.

They perform sign-extension on the immediate (except R-type instructions).

E

We want to reuse components in their datapath.
Save hardware resources on area and power.
Increase hardware utilization.

But we need to coordinate shared components.
E.g., 4-bit ALU op to dictate what operation the ALU to perform.

Essentially multiplexors to select value based on the control signal. B

sel
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MemWrite
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Select operand2 from
register file or immediate. Control ALU operation.
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data 2

Set to 1 for Load and Store.

ALU operation

data
RegWrite

Enable write to register.
Set to 1 for R-Type and Store.

Imm
Gen

Combine R-Type and Memory Instructions

Enable write into memory.
Set to 1 for Store.
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Control Unit



How to Generate Control Signals?
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Detailed Meaning of Control Signals

* The main control unit need to set these based on instruction opcode/funct.

Effect when deasserted Effect when asserted

RegWrite None. The register on the Write register input is
written with the value on the Write data input.
ALUSrc The second ALU operand comes The second ALU operand is the sign-extended,

from the second register file output | 12 bits of the instruction.
(Read data 2).

PCSrc The PC is replaced by the output of | The PC is replaced by the output of the adder
the adder that computes the value | that computes the branch target.
of PC + 4.

MemRead None. Data memory contents designated by the
address input are put on the Read data
output.

MemWrite None. Data memory contents designated by the

address input are replaced by the value on
the Write data input.

MemtoReg The value fed to the register Write | The value fed to the register Write data input
data input comes from the ALU. comes from the data memory.




Two-Level Control Logic for ALU

* Two-level control logic: main control unit = ALU control unit - ALU.
* Main control unit generates 2-bit ALUOp based on instruction type.
* ALU control unit generates 4-bit ALU control based on ALUOp and funct.

* Simplifies hardware complexity — less latency — higher frequency.

* Main control unit only checks opcode field.

* ALU control unit only checks funct7 and func3 for R-type.

Instruction Desired ALU control
opcode Operation ALU action input

load word XXXXXXX 0010
SW 00 store word XXXXXXX XXX add 0010
beq 01 branch if equal XXXXXXX XXX subtract 0110
R-type 10 add 0000000 000 add 0010
R-type 10 sub 0100000 000 subtract 0110
R-type 10 and 0000000 111 AND 0000
R-type 10 or 0000000 110 OR 0001




Observation on Instruction Format

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct7 rs2 rsl funct3 rd opcode | R-type
imm/[11:0] rsl funct3 rd opcode | I-type
imm/[11:5] rs2 rsl funct3 imm|[4:0] opcode | S-type
imm[12] | imm[10:5] rs2 rsl funct3 |imm|4:1] | imm[11] | opcode | B-type

The opcode field is always in bits 6:0. Depending on the opcode, the funct3 field (bits 14:12)
and funct? field (bits 31:25) serve as an extended opcode field.

The first register operand is always in bit positions 19:15 (rsl) for R-type and branch
instructions. This field also specifies the base register for load and store instructions.

The second register operand is always in bit positions 24:20 (rs2) for R-type and branch
instructions. This field also specifies the register operand that gets copied to memory for store.

Another operand can also be a 12-bit offset for branch or load-store instructions.

The destination register is always in bit positions 11:7 (rd) for R-type and load instructions.
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Simple Datapath with Control Unit

Main control unit.

ALU control.
2-bit ALUOp.
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4-bit ALU control.

Other control signals are 1-bit.
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* Black line — selected data. . .
. — unselected data. Add J T~
4 —» )Add Sump——| 1
* ALUOp = 10 (R-type) N o
_ I MemRead
° ALUCOntr()l = 0010 (add) Instruction [6-0] | ||‘v'1z[mo(§eg
|l’.:cznntrcml| ALUOD
* ALUSrc =0 \ [ MemWrite
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2 gperand from rs2. \ [ Regwiie
, — 1
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| PC (o> register 1 paag
. Result from ALU address Instruction [24-20] | .~ data 1 -
Instruction{ | register 2 0 ALU Zero 0
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— 10 N4
Instruction [30,14-12]
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Example: Load Instruction

Black line — selected data. ,

. — unselected data. > Add

4 — Add Sum——
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Example: Branch Instruction
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* What sw does

* Extend imm to offset.

* Add offset with rsl.
* Write rs2 to memory.

* What are the signals?

Exercise: Show Control Signals of Store
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ALUOp = 00 (lw/sw)
ALUControl = 0010 (add)
ALUSrc =1

2 gperand from imm.

MemWrite = 1
* Write to memory

Exercise: Show Control Signals of Store
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Summarize Main Control Unit

* Generate control signals based on instruction opcode (bit 0-6).

* Final truth table of main control unit:

Input or
output Signal name R-format

Inputs I[6] 0 0 1
I[5] 1 0 1 1

I[4] 1 0 0 0

I[3] 0 0 0 0

I[2] 0 0 0 0

I[1] 1 1 1 1

I[O] 1 1 1 1

Outputs ALUSrc 0 1 1 0
MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOpO 0 0 0 1
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