
CENG 3420
Computer Organization & Design
Lecture 08: Datapath
Textbook: Chapter 4.1-4.4

Zhengrong Wang

CSE Department, CUHK

zhengrongwang@cuhk.edu.hk

1

Overview

2

Processor Overview

• Get instruction from instruction memory at PC (program counter).

• Get source operands from register or immediate number in the instruction.

• Perform the operation, e.g. add, load from memory, store to memory, take a branch.

• Update PC to next instruction (+4 if no branch), and repeat from Step 1.

3

Implement Minimal RISC-V

• Arithmetic-logic instructions: add, sub, and, or.

• Memory reference instructions: lw (load word), sw (store word).

• Conditional branch instruction: beq (branch if equal).

• We will see how to add control signals to build datapath for these instructions!

4

Logic Design Conventions

• Combinational elements operates on data value:
• Outputs only depends on the current inputs.

• E.g., AND gate.

• State elements contains the state:
• At least two inputs (new state and clock) and one output (old state).

• At each clock edge (posedge or negedge), the state is updated.

• All elements have some latency – limits the frequency of the processor.
• Otherwise, state element 2 may not yet get the correct value.

5

Simple Datapath

6

Instruction Fetch

• Three components: PC (state), instruction memory (state), adder.
• Read one instruction at PC from the instruction memory.

• Increment PC by 4 bytes (32-bit) for next instruction.

• Shared among all instructions.

7

R-Type Instructions

• Always read two registers (rs1 and rs2) and write one register (rd).

• Besides fetching instructions, we need two more components.
• Register file: Holds 32 32-bit value, with RegWrite controlling whether to write.

• ALU: 4-bit ALU operation to control the behavior (add, sub, etc., see Lecture 06).

8

Memory Load and Store Instructions

• Load and store operations
• Sign-extend 12-bit imm to 32-bit offset, compute address = base (in rs1) + offset.

• For load, rd = memory[address]; For store, memory[address] = rs2.

• Besides ALU for address generation, we need two more components:
• Immediate generation unit (Imm Gen) for sign-extension.

• Data memory unit with read and write support.

9

Branch Instruction

• Branch if equal (beq) :
• Jump if rs1 equals rs2.

• Target address = PC + offset.

• Offset from sign-extension of imm to 32-bit.

• Note: offset is encoded in factor of 2,

i.e., imm[0] = 0 → PC always aligns to 2-byte.

• Portion of the datapath for beq instruction:
• Imm Gen for sign-extension.

• Register file for two compared operands.

• ALU to test equality.

• Separate adder to compute target address.

10

Shared Datapath

• Instructions share many components in their datapath.
• They all use the ALU for some operation.

• They all need PC and instruction memory.

• They perform sign-extension on the immediate (except R-type instructions).

• We want to reuse components in their datapath.
• Save hardware resources on area and power.

• Increase hardware utilization.

• But we need to coordinate shared components.
• E.g., 4-bit ALU op to dictate what operation the ALU to perform.

• Essentially multiplexors to select value based on the control signal.

11

Combine R-Type and Memory Instructions

12

Combine R-Type and Memory Instructions

13

Enable write to register.
Set to 1 for R-Type and Store.

Enable read from memory.
Set to 1 for Load.

Select the value to be
written into register file.
Set to 1 for Load.

Enable write into memory.
Set to 1 for Store.

Control ALU operation.

Select operand2 from
register file or immediate.
Set to 1 for Load and Store.

Add Branch Datapath

14

Select the PC for next
instruction (+4 or Branch).
Set to 1 if branch taken.

Control Unit

15

How to Generate Control Signals?

16

Select the PC for next
instruction (+4 or Branch).
Set to 1 if branch taken.

Enable write into memory.
Set to 1 for Store.

Select the value to be
written into register file.
Set to 1 for Load.

Enable read from memory.
Set to 1 for Load.

Enable write to register.
Set to 1 for R-Type and Store.

Control ALU
operation.

Select operand2 from
register file or immediate.
Set to 1 for Load and Store.

Detailed Meaning of Control Signals

• The main control unit need to set these based on instruction opcode/funct.

17

Two-Level Control Logic for ALU

• Two-level control logic: main control unit → ALU control unit → ALU.
• Main control unit generates 2-bit ALUOp based on instruction type.

• ALU control unit generates 4-bit ALU control based on ALUOp and funct.

• Simplifies hardware complexity → less latency → higher frequency.
• Main control unit only checks opcode field.

• ALU control unit only checks funct7 and func3 for R-type.

18

Observation on Instruction Format

• The opcode field is always in bits 6:0. Depending on the opcode, the funct3 field (bits 14:12)
and funct7 field (bits 31:25) serve as an extended opcode field.

• The first register operand is always in bit positions 19:15 (rs1) for R-type and branch
instructions. This field also specifies the base register for load and store instructions.

• The second register operand is always in bit positions 24:20 (rs2) for R-type and branch
instructions. This field also specifies the register operand that gets copied to memory for store.

• Another operand can also be a 12-bit offset for branch or load-store instructions.

• The destination register is always in bit positions 11:7 (rd) for R-type and load instructions.

19

Simple Datapath with Control Unit

• Main control unit.

• ALU control.

• 2-bit ALUOp.

• 4-bit ALU control.

• Other control signals are 1-bit.

• Let’s see some examples.

20

Example: R-Type of add x1, x2, x3

• Black line – selected data.

• Gray line – unselected data.

• ALUOp = 10 (R-type)

• ALUControl = 0010 (add)

• ALUSrc = 0
• 2nd operand from rs2.

• MemtoReg = 0
• Result from ALU

• RegWrite = 1
• Write to rd.

• Others = 0
• Not load/store/branch.

21

0010
10

1

0 0

Example: Load Instruction

• Black line – selected data.

• Gray line – unselected data.

• ALUOp = 00 (lw/sw)

• ALUControl = 0010 (add)

• ALUSrc = 1

• 2nd operand from imm.

• MemRead = 1

• To read from memory

• MemtoReg = 1

• Result from memory

• RegWrite = 1

• Write to rd.

22

0010
00

1

1 1

Example: Branch Instruction

• Black line – selected data.

• Gray line – unselected data.

• ALUOp = 01 (beq)

• ALUControl = 0110 (sub)

• Branch = 1

• And with zero.

• Pick update PC.

23

0110
10

0

0 0

1

Exercise: Show Control Signals of Store

24

????
??

?

?
?

?

• What sw does
• Extend imm to offset.

• Add offset with rs1.

• Write rs2 to memory.

• What are the signals?

?

?

Exercise: Show Control Signals of Store

25

0010
00

0

1
0

0

• ALUOp = 00 (lw/sw)

• ALUControl = 0010 (add)

• ALUSrc = 1

• 2nd operand from imm.

• MemWrite = 1

• Write to memory

1

0

Summarize Main Control Unit

• Generate control signals based on instruction opcode (bit 0-6).

• Final truth table of main control unit:

26

	Default Section
	Slide 1: CENG 3420 Computer Organization & Design Lecture 08: Datapath

	Overview
	Slide 2: Overview
	Slide 3: Processor Overview
	Slide 4: Implement Minimal RISC-V
	Slide 5: Logic Design Conventions

	Simple Datapath
	Slide 6: Simple Datapath
	Slide 7: Instruction Fetch
	Slide 8: R-Type Instructions
	Slide 9: Memory Load and Store Instructions
	Slide 10: Branch Instruction
	Slide 11: Shared Datapath
	Slide 12: Combine R-Type and Memory Instructions
	Slide 13: Combine R-Type and Memory Instructions
	Slide 14: Add Branch Datapath

	Control Unit
	Slide 15: Control Unit
	Slide 16: How to Generate Control Signals?
	Slide 17: Detailed Meaning of Control Signals
	Slide 18: Two-Level Control Logic for ALU
	Slide 19: Observation on Instruction Format
	Slide 20: Simple Datapath with Control Unit
	Slide 21: Example: R-Type of add x1, x2, x3
	Slide 22: Example: Load Instruction
	Slide 23: Example: Branch Instruction
	Slide 24: Exercise: Show Control Signals of Store
	Slide 25: Exercise: Show Control Signals of Store
	Slide 26: Summarize Main Control Unit

