
CENG3420

Lab Overview & Introduction to RARS

Fangzhou Liu

Department of Computer Science & Engineering
Chinese University of Hong Kong
{fzliu23}@cse.cuhk.edu.hk

Spring 2026

1 Overview of CENG3420 Labs

2 RISC-V ISA Simulator – RARS

2/20

Outline

2/20

Overview of CENG3420 Labs

3/20

• Assembly language – symbolic

• Machine language – binary

• Assembler is a program that

• turns symbols into machine instructions (e.g., riscv64-unknown-elf-as)

• Simulator is a program that

• mimics the behavior of a processor
• usually written in high-level language (e.g., spike)

4/20

Assembler & Simulator

4/20

We have 3 labs in total, with 2-3 sub-labs for each lab.
• Lab1: RISC-V assembly language programming using RARS simulator.

• In lab1, we will practice coding in RISC-V assembly language, and understand how
our codes run in a RISC-V CPU.

• Lab1-1: basic operators and system call.
• Lab1-2: function call and simple algorithm implementation.
• Lab1-3: stack data structure, recursive function call, more complex algorithm

implementation.

5/20

CENG3420 Lab Contents

5/20

We have 3 labs in total, with 2-3 sub-labs for each lab.
• Lab2: build(complete) a C-based RISC-V assembler and simulator.

• Codebase: https://github.com/MingjunLi99/ceng3420. We need to
implement the assembler and simulator based on the codebase.

• Lab2-1: implement a RISC-V assembler.
• Lab2-2: implement a RISC-V ISA simulator with:

• RISC-V 32 general-purpose registers
• 32-bit data and address
• 25+ instructions (including pseudo instructions)

6/20

CENG3420 Lab Contents

6/20

https://github.com/MingjunLi99/ceng3420

We have 3 labs in total, with 2-3 sub-labs for each lab.
• Lab3: build a more complete C-based RISC-V Simulator based on lab2.

• Lab3-1: control logic in CPU, finite state machine.
• Lab3-2: execution model, memory interface.
• Lab3-3: BUS driver, etc.

7/20

CENG3420 Lab Contents

7/20

RISC-V ISA Simulator – RARS

8/20

• RARS is the RISC-V Assembler, Runtime and Simulator for RISC-V assembly
language programs.

• We write codes in RISC-V assembly language, then RARS translates them into
RISC-V instructions and corresponding machine codes, then execute the codes
through simulation, like a RISC-V CPU.

• RARS supports RISC-V IMFDN ISA base (riscv32 & riscv64).

• RARS supports debugging using breakpoints like ebreak.

• RARS supports side by side comparison from psuedo-instruction to machine code
with intermediate steps.

9/20

What is RARS

9/20

• RARS tutorial: https://cass-kul.github.io/tutorials/rars/

• Install Java environment: https://java.com/en/download/

• Dowload RARS:
https://github.com/TheThirdOne/rars/releases/tag/continuous

• Run RARS: run command java -jar <rars jar path> in the command window, under
the path where you place rars.jar

• We also provide Java install package and RARS in RARS.zip on Blackboard.

10/20

Launch RARS

10/20

https://cass-kul.github.io/tutorials/rars/
https://java.com/en/download/
https://github.com/TheThirdOne/rars/releases/tag/continuous

RARS edit panel 11/20

RARS Overview

11/20

12/20

RARS Overview

12/20

RARS execute panel 13/20

RARS Overview

13/20

14/20

RARS Overview

14/20

• Create a new source file: Ctrl + N

• Close the current source file: Ctrl + W

• Assemble the source code: F3

• Execute the current source code: F5

• Step running: F7

• Instructions & System call query: F1

15/20

Shortcuts in Windows

15/20

Hello CENG3420

.globl _start

.data # global variable declarations follow this line
welcome_msg: .asciz "Welcome to CENG3420!\n"

.text # instructions follow this line
_start: # a label, marks a position in the code

addi a0, x0, 1 # STDOUT=1
la a1, welcome_msg # Load the address of welcome_msg
addi a2, x0, 21 # Length of the string
addi a7, x0, 64 # Specify the system call number
ecall # Raise a system call

End of program, leave a blank line afterwards is preferred

16/2016/20

An Example Program

16/20

17/20

An Example Program

17/20

RARS provides a small set of operating system-like services through the system
call (ecall) instruction. Register contents are not affected by a system call, except
for result registers in some instructions.

• Load the service number (or number) in register a7.

• Load argument values, if any, in a0, a1, a2 ..., as specified.

• Issue ecall instruction.

• Retrieve return values, if any, from result registers as specified.

18/20

System Calls in RARS

18/20

19/20

System Calls in RARS

19/20

THANK YOU!

20/20

	Overview of CENG3420 Labs
	RISC-V ISA Simulator – RARS

