A AP LKEZ

<~ The Chinese University of Hong Kong

CENG3420
Lab 1-1: RISC-V Assembly Language Programing I

Jiahao Xu, Fangzhou LIU

Department of Computer Science & Engineering
Chinese University of Hong Kong

{jhxu24, fzliu23}@cse.cuhk.edu.hk

Spring 2025

@ Introduction to Basic RISC-V Assembly Programing
@ System Call in RARS

® Lab1-1

2/27

Introduction to Basic RISC-V
Assembly Programing

Computer and Computing

* Computer, oversimplified.

4 Computer 0\
4 cPU N
Registers ALU
a0,al,a?, +,-%./%,
ORI & |,
b Y
Memory)
| DDR3/DDR4/DDR5/-)
-)

¢ Computing, oversimplified.

Save the result to a register

Load Data
| Move data from m‘emory to registers
(= .
Calculation

v
-

Write Data

| Move result from register to memory |

~

4/27

What is Assembly Language?

Definition
Assembly language is a low-level programming language that provides a symbolic

representation of machine code instructions. It’s specific to a particular computer
architecture (like RISC-V).

¢ Direct hardware control
¢ One-to-one correspondence with machine code

® Architecture-specific syntax

5/27

What is an Assembler?

Definition
An assembler is a program that translates assembly language into machine code. It’s the

tool that converts human-readable assembly instructions into binary code that the
computer can execute.

Example

Assembly: add x1, x2, x3
1 (Assembler)
Machine Code: 00000000001100010000000010110011

6/27

What is a RISC-V Simulator?

Definition
A RISC-V simulator is a software tool that emulates RISC-V processor behavior, allowing
programmers to run and test RISC-V assembly programs without physical hardware.

¢ Executes RISC-V instructions virtually
® Provides detailed execution feedback

¢ Useful for education and debugging

RARS

RARS is an educational simulator based on MARS (MIPS Assembler and Runtime
Simulator), specifically adapted for RISC-V architecture.

¢ Integrated development environment (IDE)
® Built-in text editor
® Assembler and simulator combined

¢ Java-based (platform independent) 7727

RISC-V Instruction Set

Important Material

The RISC-V Instruction Set Manual Volume I: Unprivileged ISA
https://riscv.org/technical/specifications/

In all labs of CENG3420, we focus on RV32I instructions.

8/27

https://riscv.org/technical/specifications/

An Example Assembly Language Program

* How to compute "C = A + B"

resC arA + varB => resC = 8 after executi

.globl _start

.data # global variable declarations follow this line
varA: .word 3 # 1 word = 32 bits

varB: .word 5

resC: .word O

.text # instructions follow this line

_start: # a label, marks a position in the code
la al, varA # Load varA’s address to register al
la a2, varB # Load varB’s address to register a2
la a3, resC # Load resC’s address to register a3
1w tl, 0(al) # Load varA’s value to register tl
1w t2, 0(a2) # Load varB’s value to register t2
add t3, tl, t2 # Register t3 = tl + t2
sw t3, 0(a3) # Save register t3 to resC

9/27

Program Structure I

¢ Plain text file with data declarations, program code (usually suffixed with .asm)

¢ Data declaration section is followed by program code section

Data Declarations

¢ Identified with assembler directive .data

¢ Declares variable names used in program
¢ Storage allocated in main memory (e.g., RAM)

¢ <name>: .<datatype> <value>

® .byte (1 byte/8 bits), . 2byte, .half, .short (2 bytes)
® .4byte, .word, .long (4 bytes), . 8byte, .dword, . quad (8 bytes)
¢ .float, .double,

10/27

Program Structure II

¢ placed in section of text identified with assembler directive .text

¢ contains program code (instructions)

¢ starting point for code e.g. execution given label start:

Comments

Anything following # on a line

11/27

Program Structure III

The structure of an assembly program looks like this:

Program outline

Comment giving name of program and description
Template.asm
Bare-bones outline of RISC-V assembly language program

.globl _start
.data # variable declarations follow this line
#

.text # instructions follow this line

_start: # indicates start of code
#

End of program, leave a blank line afterwards is preferred

12/27

Data Types and Literals

Data types:

¢ All instructions are encoding in 32 bits

¢ Alias: byte (8 bits), halfword (2 bytes), word (4 bytes), double word (8 bytes)
Literals:

¢ numbers entered as is. e.g., 12 in decimal, and 0xC in hexadecimal

¢ characters enclosed in single quotes. e.g., ‘b’

¢ strings enclosed in double quotes. e.g., “A string”

13/27

¢ We can manipulate 32 architectural registers in assembly programming directly.
* We prefer using aliases to indicate registers.
¢ Instructions category

Load and store instructions
Bitwise instructions
Arithmetic instructions
Control transfer instructions
Pseudo instructions

14/27

Register Names and Descriptions

Table: Register names and descriptions

Register Names | ABI Names Description
x0 Zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary / Alternate link register
x6-7 tl -2 Temporary register
x8 s0 / fp Saved register / Frame pointer
x9 sl Saved register
x10-11 a0-al Function argument / Return value registers
x12-17 a2-a7 Function argument registers
x18-27 s2-s11 Saved registers
x28-31 t3-t6 Temporary registers

15/27

More Information

For more information about RISC-V instructions and assembly programing you
can refer to:

@ Lecture slides and textbook.
@ RARS Help: F1

® https://github.com/riscv-non-isa/riscv-asm-manual/blob/main/
README . adoc

O https://projectf.io/posts/riscv-cheat-sheet/

16/27

https://github.com/riscv-non-isa/riscv-asm-manual/blob/main/README.adoc
https://github.com/riscv-non-isa/riscv-asm-manual/blob/main/README.adoc
https://projectf.io/posts/riscv-cheat-sheet/

System Call in RARS

System Calls in RARS I

RARS provides a small set of operating system-like services through the system
call (ecall) instruction. Register contents are not affected by a system call, except
for result registers in some instructions.

¢ Load the service number (or number) in register a7.
¢ Load argument values, if any, in a0, al, a2 ..., as specified.
¢ Issue ecall instruction.

¢ Retrieve return values, if any, from result registers as specified.

18/27

System Calls in RARS II

Name
PrintInt
PrintFloat
PrintString
ReadInt
ReadFloat

ReadString

Open

Read

Write

LSeek

Number

1024

63

64

62

Description
Prints an integer
Prints a float point number

Prints a null-terminated string to the console

Reads an int from input console

Reads a float from input console

Reads a string from the console
Opens a file from a path Only supported flags

(al), read-only (0), write-only (1) and write-
append (9)

Read from a file descriptor into a buffer

Write to a filedescriptor from a buffer

Seek to a position in a file

Inputs
a0 = integer to print
fa0 = float to print
a0 = the address of the string
a0 = the int
fa0 = the float
a0 = address of input buffer, al =

maximum number of characters to read

a0 = Null terminated string for the path,
al = flags

a0 = the file descriptor, al = address of
the buffer, a2 = maximum length to
read

a0 = the file descriptor, al = the buffer
address, a2 = the length to write
a0 = the file descriptor, al = the offset
for the base, a2 is the begining of the
file (0), the current position (1), or the
end of the file (2)}

Outputs
N/A
N/A
NA
N/A
N/A

N/A

a0 = the file decriptor or -1 if
an error occurred

a0 = the length read or -1 if

error

a0 = the number of charcters
written

a0 = the selected position from

the beginning of the file or -1
is an error occurred

19/27

An Example of System Calls in RARS I

An example shows how to use system calls in RARS

Using system call

Comment giving name of program and description

sys—call.asm

Bare-bones outline of RISC-V assembly language program
.globl _start

.data
msg: .asciz "Hello, world!\n"

.text

_start:

1li a7, 4 # system call code for PrintString
la a0, msg # address of string to print

ecall # Use the system call

End of program, leave a blank line afterwards is preferred

You can check the output in Run/IO of the program information panel.

20/27

An Example of System Calls in RARSII

¢ liloads a register with an immediate value given in the instruction.
¢ Ialoads an address of the specified symbol.

® .asciz emits the specified string within double quotes and includes the terminated
zero character at the end.

21/27

Lab 1-1

Lab1 Overview

We have 3 sub-labs for lab1.
¢ Lab1: RISC-V assembly language programming using RARS simulator.

¢ Inlabl, we will practice coding in RISC-V assembly language, and understand how
our codes run in a RISC-V CPU.

¢ Lab1-1: basic operators and system call.

¢ Lab1-2: function call and simple algorithm implementation.

¢ Lab1-3: stack data structure, recursive function call, more complex algorithm
implementation.

23/27

Labl-1 Requirement

Write a RISC-V assembly program lab1-1.asm step by step:

@ Define three variables varl, var2 and var3 which will be loaded from terminal
using syscall.

@ Increase varl by 5, multiply var2 by 4.
® increase var3 by varl + var2.

@ print varl, var2 and var3 to terminal using syscall.

Example:

Input:

1

2

3
Output:
6

8

17

24/27

@ Variables should be declared following the . data identifier.

® <name>: .<datatype> <value>

©® Use 1a instruction to access the RAM address of declared data.
@ Use system call to read and print from the terminal.

© Do not forget \n.

® Do not forget exit system call.

@ You do not need to print "Input:" or "Output:" in the example in the previous page.

25/27

Submission

Submission Method:

¢ Submit the source codes and report after finishing all the sub-labs of Lab1.
¢ The submission window of Lab1 will be opened on Blackboard.

¢ The report template can be found on the homepage of CENG3420: https:
//seanzw.github.io/asset/ceng—-3420/labl-report—template.pdf

26/27

https://seanzw.github.io/asset/ceng-3420/lab1-report-template.pdf
https://seanzw.github.io/asset/ceng-3420/lab1-report-template.pdf

THANK YOU!

27/27

	Introduction to Basic RISC-V Assembly Programing
	System Call in RARS
	Lab 1-1

