A AP LKEZ

<~ The Chinese University of Hong Kong

CENG3420
Lab 1-2: RISC-V Assembly Language Programing II

Jiahao Xu, Fangzhou Liu

Department of Computer Science & Engineering
Chinese University of Hong Kong

{jhxu24, fzliu23}@cse.cuhk.edu.hk

Spring 2026

@ Recap

@ Function Call Procedure
(3] Array Partitioning

@ Lab 1-2 Assignment

2/31

Recap

Recap
Important Materials

¢ The RISC-V Instruction Set Manual Volume I: Unprivileged ISA

https://riscv.org/technical/specifications/

¢ (For your reference): Supported instructions for RV32I https:
//github.com/TheThirdOne/rars/wiki/Supported-Instructions

In all labs. of CENG3420, we focus on RV32I instructions.

4/31

https://riscv.org/technical/specifications/
https://github.com/TheThirdOne/rars/wiki/Supported-Instructions
https://github.com/TheThirdOne/rars/wiki/Supported-Instructions

Recap
RV32I Assembly Language Programing

Categories

* Functional:

¢ Integer Computational Instructions

¢ Control Transfer Instructions

® Load & Store Instructions

¢ Environmental Call & Breakpoints

¢ Memory Ordering Instructions

¢ HINT Instructions

¢ Encoding:
31 30 25 24 21 20 19 15 14 12 11 8 T 6 0

| Fnet? [) [l [funed | wd Topeode | R-type
| Fmm[T0] [sl [funes | wd [opeode | L-type
[Tmm[11:5] [53 [vl [fmca3 | imm[d0] [opoode] S-type
[fmm{12] | imm[10:5] | 152 [sl | funct3 |imm[d:1] [imm([11] | opcode | B-type
[Tmm[E112]] T [opeode | U-type
[imm[20] | imm{10:1] [imm[11] | imm{19:12] | rd [opeode | J-type

5/31

Recap
Integer Computational Instructions

Integer Register-Immediate Instructions

¢ (I-type) addi, s1ti, sltiu, andi, ori, xori

¢ (I-type) s11i,srli, srai
¢ (U-type) 1ui, auipc

Integer Register-Register Operations

¢ (R-type) add, slt, sltu, and, or, xor s11, srl, sub, sra

6/31

Recap
Control Transfer Instructions

Unconditional Jumps

* (J-type) jal
¢ (I-type) jalr

Conditional Branches

¢ (B-type) beqg, bne, blt, bltu, bge, bgeu

7/31

Recap

Load & Store Instructions

Load & Store Instructions

¢ (I-type) 1b, 1bu, 1h, 1hu, 1w
¢ (S-type) sb, sh, sw

8/31

Recap
RISC-V Assembler Directives

Object File Section

¢ .text, .data, .rodata

Definition & Exporting of Symbols

¢ .globl, .local, .equ

9/31

Recap
Alignment Control

Object File Section

® .align, .balign, .p2align

Emitting Data

¢ .byte, .2byte, .4byte, .8byte, .half, .word, .dword, .asciz, .string,
.Zero

10/31

Examples
Dealing with an Arra

.data
a: .word 1 2 3 4 5

¢ “a” denotes the address of the first element of the array.

¢ We can access through rest of the elements with .word offset (i.e., 4 bytes).
(What should be the offset for the 2" element in the array above?)

11/31

Examples I

Example 1: Register Initialization and Loading Immediate Values

_start:
andi t0, tO0, O # Make it zero
andi t1, t1, O
andi t2, t2, 0
1i t0, OxFF # Load a 8-bit number
1li tl1, OxFFFF # Load a 32-bit number
1i t2, OxXFFFFFFFF # Load a 64-bit number

12/31

Examples II

Example 2: Arithmetic Operations

_start:
andi t0, tO, O
andi tl1, tl1, O
andi t2, t2, 0
1i t0, 0x1A352A9C # t0 = 0x1A352A9C
1i tl, 0x1B2D4C6A # tl 0x1B2D4C6A
add t2, t0, tl # t2 = tl + t0

13/31

Examples III

Example 3: Conditional Branching

_start:
andi t0, tO, O
andi t1l, tl, O
andi t2, t2, 0
andi t3, t3, 0
andi t4, t4, 0
andi t5, t5, 0
1i t0, 2
1i t3, -2
slt tl1, t0, zero
beq tl, zero, else_if
j end_if

else_if:
sgt t4, t3, zero
beq t4, zero, else
j end_if

else:
seqz t5, t4, zero

end_if:

j program_end

S ¥ W R W

S S

to = 2
t3 = -2
tl =1 if t0 < 0

Branch if tl equals zero
Unconditional jump to end _if

t4d =1 if £t3 > 0
Branch if t4 equals zero

Unconditional jump to end_if

tsh =1 if t4 =0

14/31

Function Call Procedure

Example I
Code Example

Code Example sum:
addi sp, sp, —32
int sum(int a, int b) Sw s0,28 (sp)
{ addi s0, sp, 32
return a + b; add a5,ad,ab
} mv a0, a5
.) 1w s0,28 (sp)
int main
0 addi sp, sp, 32
{ jr ra
int c; main:
c = sum(3, 5);
. addi s0,sp, 32
return c; 0- al.s
} 1i a0, 3
jal ra, sum # or call sum

16/31

Example I

Code Example

main:
addi

sp, sp, =32
ra, 28 (sp)
al,5
a0, 3

ra, sum
al0,12 (sp)
a5,12 (sp)
a0,a5,0
ra, 28 (sp)
sp, sp, 32
ra

SOWE W TR W W W W W W W

allocate space for local variables
save the return address of the caller
second argument of sum (3, 5)

first argument of sum(3, 5)

call sum(3, 5)

save a0l (the returned value) to 12 (sp)
load the value in 12 (sp)

the value to return is put in a0
restore the return address of the caller
restore the stack pointer

return

® You can try to simplify the code

17/31

Function Call Procedure

¢ The JAL instruction (unconditional jump instruction) is used to implement a
software calling.

¢ The address of the instruction following JAL (pc+4) is saved into register rd.

¢ The target address is given as a PC-relative offset (the offset is sign-extended,
multiplied by 2, and added to the value of the PC).

31 30 21 20 19 12 11 76 0
| imm[20] | imm[10:1] | imm[11] | imm([19:12] | rd | opcode \
1 10 1 8 5 7
offset[20:1] dest JAL

18/31

Function Call Procedure — JAL

jal rd, offset
jal rd, label

loop: addi x5, x4, 1 # assign x4 + 1 to x5
jal x1, loop # assign ‘PC + 4' to x1 and jump to loop

19/31

Function Call Procedure

JALR

¢ The JALR instruction (indirect jump instruction) is used to implement a subroutine
call.

¢ The address of the instruction following JAL (pc+4) is saved into register rd.

¢ The target address is given as a PC-relative offset (the offset is sign-extended and
added to the value of the destination register).

31 20 19 1514 12 11 76 0
imm[11:0] | rsl | funct3 | rd ‘ opcode |
12 5 3 5 7
offset[11:0] base 0 dest JALR

20/31

Function Call Procedure — JALR

jalr rd, offset(rs1)
Usage
addi x1, x0, 3 # assign x0 + 3 to x1
loop: addi x5, x0, 1 # assign x0 + 1 to x5
jalr x0, 64 (x1) # assign ‘PC + 4' to x0 and jump to the address ‘x1 + 64"

21/31

More Examples of Function Call Procedure

A pseudo instruction for JAL

Syntax
j label
Usage
loop: addi x5, x4, 1 # assign x4 + 1 to x5
j loop # assign ‘PC + 4' to x0 and jump to loop

(discard the return address)

—

A pseudo instruction for JALR

Syntax

jrrsl 22/31

Array Partitioning

Partitioning

¢ Pick an element, called a pivot, from the array.

¢ Reorder the array so that all elements with values less than the pivot come before the
pivot, while all elements with values greater than the pivot come after it (equal
values can go either way).

1: function PARTITION(A, lo, hi)
2: pivot <— Afhi]

3: i+ lo-1;

4: forj=1lo;j <hi-1;j +j+1 do
5: if A[j] < pivot then

6: 1<+ i+1;

7: swap A[i] with A[j];
8: end if

9: end for

10: swap A[i+1] with A[hi];

11: return i+1;

12: end function
24/31

Example of Partition

i pj
2[8[7[1]3]5]s]
piJ r
2fs[7[1]3]s]6]4
pi

J r
© CEREPEE6]e
i j

[1[3]5]e]
p i J r
© HEOE

J

r

=

)

=
<

=

el r
(d 4

(o]
[>]

2 8

=
~.
~

<
[w]=
[=]
- -..
]
B
H\(

2

D
€
=
- L
[>]

~
~

(h) 211|3

[=]
=]
-
(2]

~

3

1

[w]=
[=]

i 2

n this example, p =lo and r = hi. 25/31

Lab 1-2 Assignment

Lab Assignment

An array arrayl contains the sequence 15 8 -5 46 3 -4 8 10 -6 1,each
element of which is .word. Rearrange the element order in this array such that,

@ All the elements smaller than the 5 element (i.e. 3) are on the left of it,
@ All the elements bigger than the 5" element (i.e. 3) are on the right of it.
And print the result (i.e. the partitioned sequence) to the terminal using syscall.

Submission Method:

Submit the source code and report after the whole lectures of Lab1 into Blackboard.

27/31

Lab Assignment

Declarations

* The given sequence arrayl is fixed. You do not need to write input syscall to get it
from terminal.

* The pivot is fixed at the 5" element (i.e. 3). You also do not need to write input
syscall to get it from terminal. (We will check whether the whole algorithm is
implemented appropriately, your code should work with other pivots.)

¢ For the result (i.e. the partitioned sequence), please print it to the RARS terminal
using syscall, as an example shown in the following figure:

Messages | RunliO |
51 -4-653153104635
program 15 finished runming (dropped off bottom) —

28/31

Appendix-A Simple Sort Example

Swap v[k] and v[k+1]

Assume a0 stores the address of the first element and a1l stores k.

swap: sll t1,

to v[0]
add t1,
1w tO,
1w t2,
sw t2,
sw tO0,

#

S W H W H

get the offset of v[(k] relative

get the address of v/[k]

load the
load the
store t2
store t0

v(ik] to tO
vik + 1] to t2
to the v/[k]
to the vk + 1]

29/31

Appendix-B Simple Sort Example

void sort (int v[], int n)

{

int i, j;
for(i = 0; 1 < n; 1 += 1)
{

for(j =1 -1; j >= 0 && v[j] > v[]j + 1]; J —-= 1)

{
swap(j + 1, 3);
}

30/31

Appendix-C Save and Exit

Exit and restoring registers

exitl:
1w ra, 16 (sp)
1w s3, 12 (sp)
1w s2, 8(sp)
1w sl, 4 (sp)
1w s0, 0(sp)
addi sp, sp, 20

31/31

	Recap
	Function Call Procedure
	Array Partitioning
	Lab 1-2 Assignment

