Infinity Stream

Portable and Programmer-Friendly In-/Near-Memory Fusion

Zhengrong Wang1, Christopher Liu!, Aman Arora2, Lizy John2, Tony Nowatzkit
TUCLA, 2UT Austin

UCLA #i::

1 ASPLOS 2023

Vancouver, Canada

100

Von Neumann Bottleneck

Performance limited by memory bottleneck

10

Log Scale

1

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

. Understanding Latency Variation in Modern DRAM Chips: Experimental Characterization, Analysis, and Optimization
. Karl Rupp’s 48 Years of Microprocessor Trend

Core

Memory

100

Von Neumann Bottleneck

Performance limited by memory bottleneck

Log Scale

1

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Core

Expensive data movement

Memory

Compute Paradigms

More Expressive Less Expressive

Less Parallelism More Parallelism
In-Core Near-Memory In-Memory
Von Neumann Model Spatially Local Simple Cores Massive Vector Processing
Core
N

<
*
L
*
L 2
.
)
)
n
n
)
L 4
.0
L 4
&
“ 0. .
L 4
n a
.]
’0
/ L 4

‘0

Memory Memory

= Supports complex control flow = Programs similar to in-core = Massive amounts of parallelism
without control flow

“~ Von Neumann bottleneck ~~ Limited parallelism - Difficult to program due to many
restrictions

Example: PointNet++

\
% »
v
Gather ' ' Aggregate
I[rregular memory access Element-wise max()

Core Core

7 | 7 |

Memory Memory Memory Memory

Near-Memory In-Core Near-Memory In-Memory In-Core

6

[T
[T

o ©
@ ‘C
® 1)

Furthest Sample '

Multi-layer Perceptron

Matrix computations

Ball Query

Complex control

Irregular memory access

There I1s an Adoption Problem

Programming Is Difficult

Near-Memory Compute

Core

In-Memory Compute

matmu(core_A, core_B, core C):
in_ A = inMemcpy(core A, M x N, fromCore)
in B = inMemcpy(core B, M x N, fromCore)
in C = inMalloc(M x N)

for m in [0, M):
for n in [0, N):

in V. = in Alm][:] *x in B[:]I[c]

in_V = inPartialReduce(+, in V, rounds=3)
near V = nearMalloc(K)
near_V = nearMemcpy(in_V, K/ 2 / 2 / 2,
fromIn)
near_dotpdt = nearReduce(near V)
core_C[m] [n] = coreMemcpy(near_dotpdt,
fromNear)

Mat matmul(Mat A, Mat B, Mat C):
for m in [0, M):
inMemory Compits " " 1 [0, 1)
for k in [0, K):
CIm]l [n] += Alm][k] * BI[k][n]

Easier to program

Outline
©

Compute Paradigms

bArch-specific

Unified Abstraction

Optimizations
Agnostically represents Specialize binary to take In-Core
1. In-core compute advantage of pArch details Memory

2. In-memory compute
3. Near-memory compute

Plain C Code

bArch Extensions
]

Portable binary without Hardware support for
exposing PYArch details to compute paradigms
compiler

Partitioning
Static vs Dynamic

Near-Memory Memory

11

Outline

Compute Paradigms

In-Core

Memory

£l

Near-Memory Memory

12

offload

Near-Memory Compute
Offload computation closer to the data

Cl[i] = A[i] & B[1il]
Supports complex memory access patterns
+ + +

Affine Patterns /--] ,‘--] ,‘"\ §o) '
Y 4 Y 4 Y 4 (U :
4,
Y—
O
+ N ‘
Indirect Patterns ~_.--- 2SR

e.g., BIA[i]] SRR Liht S
s [T T [IT]

with reduction capabilities

Limitation: Lower compute width

13

In-Memory Compute
Augment memory technology with compute

Cli] = Al1] & B[1i]

15

In-Memory Compute
Augment memory technology with compute

Cli] = Al1] & B[1i]

Bitlines (256)

Wordlines (256)

PEs (A op B)
SRAM Array

16

In-Memory Compute
Augment memory technology with compute

C[i] = A[i] & BIil] Standard Data Layout
Bitlines (256)
l 1 | |

Wordlines (256)

PEs (A op B)
SRAM Array

17

In-Memory Compute
Augment memory technology with compute

C[i] = A[i] & B[il Bit-Serial Data Layout
Bitlines (256)

Supported Operations Lt 1 L1l b1l e L

+-% / S & | N << >>
sin cos exp log sqrt

e A == RN
B[i].LSB

Offers massive vector parallelism

e e e = EO
C[i].LSB

Wordlines (256)

g s ey e R R

Bitwise Operations PEs (A op B)

SRAM Array

18

In-Memory Compute
Augment memory technology with compute

Bit-Serial Data Layout

Bitlines (256)
Supported Operations I T A O A
S D | R | | N 1 N | I | N | BN | B | B | | — A[i].LSB
+-%x / % & | © << >> _ u
sin cos exp log sqrt - B
— — A[i] .MSB
— — B[i].LSB
Offers massive vector parallelism g - -
Q- -
% = — B[i] .MSB
% - — C[i].LSB
2 Z
] — C[i] .MSB
:-I'-I'-I'-I'-I'ﬁ'-l'-l'-l'-l'-l' - . .
trcreatrrces | CLE1 = ALl & BIi]
Challenge: Requires data alignment & transpose PEs (A op B)

SRAM Array

20

Programming
Considerations

1. Orchestration

Meet the requirements for each compute paradigm

 Data alignment * Bit-serial transpose
e Data layout & tiling Managing on-chip space

Compute Paradigms

In-Memory Compute

Offers massive vector parallelism

Requires data alignment & transpose

2. Fused In-/Near-Memory

Statically & dynamically take advantage of each
compute paradigm

Near-Memory Compute

Supports complex memory access patterns

with reduction capabilities * In-Memory: Large input size & element-wise compute

 Near-Memory: Small input size or irregular memory patterns

. -of in-/near-memory
3. Portability

Target a large variety of microarchitectures with a
single binary

Lower compute width

m--------------------------------

Programming
Considerations

1. Orchestration

Meet the requirements for each compute paradigm

 Data alignment * Bit-serial transpose
 Data layout & tiling Managing on-chip space

Transparency

2. Fused In-/Near-Memory
minimizes programmer burden

Statically & dynamically take advantage of each
compute paradigm

* In-Memory: Large input size & element-wise compute
 Near-Memory: Small input size or irregular memory patterns
* Fusion of in-/near-memory

3. Portability

Target a large variety of microarchitectures with a
single binary

23

Outline

Unified Abstraction

Agnostically represents
1. In-core compute
2. In-memory compute
3. Near-memory compute

24

Dataflow Representation

Sequential

25

Near-Memory Compute

» Memory access pattern
 Computation

In-Memory Compute

 N-D Tensors
» Data alignment
e Spatial reuse

Fused In-/Near-Memory

 Reduction operations
* Fusion

Stream Dataflow Graph

_ Memory Access
1D Filter Pattern
for i in [@, N-1): NN
o Memory access pattern Bl[i] = F[0Q] Ali] Ennnn encoded by Stream Node Ao
- NN

FI1] A [l+1] alb]c]d]e]f]la]n]| encoded by Stream Node A1

26

Stream Dataflow Graph

(NN (NN

afofcldfefflofn] [afo]cfd]eff]ofn

1D Filter ‘ ‘ ’ @
for i in [0, N-1):

FI1] Ali+1]
'.,@“ﬂ

28

Tensor Dataflow Graph

Observation: contiguous memory access may be tensorized

® ® ® @
for 1 in [0, N-1):
N-D Tensors B[i] = A@A A@t
FI1] Ali+1] @
“ay ““

But we need to map data to hardware

30

Tensor Dataflow Graph

1D Filter Observation: contiguous memory access may be tensorized

for i in [@, N-1): a]b ¢ £ g

slil = Flel »

i ®
Maps ‘®A ‘®‘

data — virtual vector lane

Global Lattice Space
Data alignment Each CeII represents a virtual vector lane

Maps
. . . . " " . . . virtual vector lane —
........ physica/ vector lanhe
#
v Hardware Vector Processor

31

Tensor Dataflow Graph

1D Filter
for 1 in [0 , N-1): Memory access is represented as a hyperrectangle
slil = Flol x Ali | @

0’ ‘0
L 4 *
L 4 . ‘0
L 4 L

Global Lattice Space
Data alignment Each CeII represents a virtual vector lane

33

Tensor Dataflow Graph

1D Filter

for 1 in [0 , N-1): Memory access is represented as a hyperrectangle

Bli] = Fl0] x Ali] @

.."~ “““‘
Data alignment Move Node @ realigns hyperrectangle :

36

O Reduction operations

Matrix-Vector Multiplication

for m in [@, M):
for k in [@, K):
CIlm] += Alm] [k] * BI[K]

Example

O Reduction operations

Matrix-Vector Multiplication

for m in [@, M):
CIm] = sum(A[m][:]1 * BI[k])
Vectorize

Example

O Reduction operations

Example

Matrix-Vector Multiplication

: : TS :
: H . . .
*

O Reduction operations

Matrix-Vector Multiplication
for m in [@, M): Spatial v . v »

Example

O Reduction operations

Matrix-Vector Multiplication
for m in [@, M): Spatial v . v »

Example

Matrix-Vector Multiplication
for m in [0, M): Spatial

CIm] =:sum(A[ml[:] * BILKk]): @A

Reduction Tree Step reduce
dim=0
An X B 0
o Reduction operations + /’25 d
= A
1
Insufficient parallelism

¥

Use near-memory to perform reduction

Wasted Parallelism 2

47

Spatial reuse

Matrix-Vector Multiplication
R

© C[m] = sum(AIml[:] * BIK]): A@
Idea: Expose more parallelism through spatial reuse educe
dim=0
Example

O
A

50

Matrix-Vector Multiplication
R

© o CIm] = sum(AImI[:] 3[K]): A@

Idea: Expose more parallelism through spatial reuse Q edu

Example

NN) ®
reauce
92

Duplicate

Matrix-Vector Multiplication
for m in [0, M): e - ‘ ‘

Ciml = sum(A[m][:] * BIK]): 'icountﬂl
"""""""""""""""""" dist=0
Idea: Expose more parallelism through spatial reuse @

reduce
dim=0
Example -

) é reduce
m]
Duplicate
el] -
Broadcast Node @ captures spatial reuse
e

Matrix-Vector Multiplication
for m in [0, M): e -

.) 4
: C m = sum(A|lm * B k "“ count=4
..... SESCHCIBRAY L @

Idea: Expose more parallelism through spatial reuse @

reduce
dim=0

é reduce

Spatial reuse

bt Broadcast Node () - captures spatial reuse

56

Matrix-Vector Multiplication
for m in [0, M): e -

.) 4
: C m = sum(A|lm * B k "“ count=4
..... SESCHCIBRAY L @

Idea: Expose more parallelism through spatial reuse @

reduce
dim=0

é reduce

Spatial reuse

Broadcast Node captures spatial reuse

57

Stream € Tensor

Load as Stream Reduction Stream Store as Tensor

vectorized compute phase irreqular memory phase

Sequential

Parallel Parallel

irregular memory phase

vectorized compute phase

. Parallel
Fusion

Sequential

Sequential

. uuu - Special case of Set up M

[oad as Stream

e sfp—j—— 1 e e e e
O Accesses tensor data with -
« Al « £ 1 11 0 e

<

any memory access pattern Contiguous memory : & : i @ i 1 & :

Supportedbystreams ..?....?....EI....?....?....E....-E.....E.....E..
I RPR- R R SRR SR S TR SO
v n

58

Outline
©

bArch-specific
Optimizations

Specialize binary to take
advantage of pyArch details

bArch Extensions

Hardware support for
compute paradigms

59

Mapping to Hardware

Global Lattice SRAM Banks

In-Memory Organization

Each last-level cache bank
consists of many in-memory

Question SRAM arrays
What are the effects of tiling on .
: : Bitlines (256)
on inter-bank traffic?
©
S
=
=
PEs (A op B)

array @l array f array g array array § array p array g array

61

In-Memory Organization

Abstract many SRAM arrays

Question into a single large SRAM array

What are the effects of tiling on
on inter-bank traffic?

array

array

62

Bank Bank

Lattice cells are a sub-matrix of
some larger matrix

64

e AR - e AR -

67

..

n n u

L " "

" 0 ()

..

sansasansnnshannnndianansn

" " W

[() (]

/1

SR SN PO R SO (O SO SR SN PO R SO (O SO SN SUUIN S N
FIR S-S S-S —- A S S S - S

74

Unmapped data

SR SN PO R SO (O SO SR SN PO R SO (O SO SN SUUIN S N
FIR S-S S-S —- A S S S - S

/6

Unmapped data

e PR TTTIT P T LTI oo

e S UG SUSH NESIND oS e ... B e P . S S-S IO
[SN el . e

/8

Unmapped data

Inter-Bank Data Movement

Row Square

snsssshannnnshannandunnnnafannnnnfannnnnfuannnnnlunnnns snssssbannnnsfannnnahannns snsssshannnnshannandunnnnafannnnnfannnnnfuannnnnlunnnns snsanshasnnnahannnndhannnn
I e oo NS N I |, COPY L

81

Unmapped data

S-S S-S S-S S S S-S S-S S-S S S SN SN S S
FIR - S-S —- e e e e S

84

Inter-Bank Data Movement

Row Square

Unmapped data

III

A - . " N

e v

L " "

" 0 ()

A - Y " N

ST R S

" " W

[() w

87

Inter-bank Data Movement
depends on
Tiling Size + Move Direction

Inter-bank Data Movement
depends on
Tiling Size + Move Direction

Static Dynamic
Runtime &
JIT Compiler

Layout Hints

1. Inter-Bank Traffic: 2. Data Alignment:

Best tiling size that minimizes inter-bank data movement Tensors A & B must have matching tiling size
Tensor @ IS moved along dimensions d1, do, ds, ... Tensors @ & are used together

89

Microarchitecture Extensions

o
Core ! .
Tensor Layout Override Table
i

Stream Controller :
Engine Tracks which arrays are
currently transposed

Tensor Transpose Unit Stream | nonsor | Lot
ontroller
Transposes array elements

to and from bit-serial format L
BB B

Array
SRAM
Array

More detd@ls in paper

Outline

Partitioning
Static vs Dynamic

Portable binary without
exposing PYArch details to
compiler

91

Outline

Static Dynamic
Compute Paradigms

HArch-specific
Optimizations In-Core

Memory

Agnostically represents pArch Support
1. In-core compute

2. In-memory compute Hardware support for Il
3. Near-memory compute compute paradigms Near-Memory Memory

Specialize binary to take
advantage of pyArch details

Plain C Code

Unified Abstraction

92

Key Challenges

Static Dynamic
Compute Paradigms

HArch-specific
Optimizations In-Core

Memory

Agnostically represents HArch Extensions
1. In-core compute

2. In-memory compute Hardware support for Il
3. Near-memory compute compute paradigms Near-Memory Memory

Specialize binary to take
advantage of pyArch details

Plain C Code

Unified Abstraction

93

Outline

Static Dynamic

Compute Paradigms

|
Runtime
In-Core

Memory

Plain C Code JIT Compiler
bArch Extensions]
Near-Memory Memory

94

Static Dynamic

Compute Paradigms

Runtime
In-Core

Memory

Plain C Code Compiler JIT Compiler
bArch Extensions L]
Near-Memory Memory

: Data alignment & layout
Requwements * Portable binary

 Decide between in-core, in-/near-memory, and fusion
 Managing on-chip space

e Tiling

 Bitsserial transpose

The Infinity Stream Approach

Static Dynamic

. .
 Decide between in-core,

in-/near-memory, and fusion In-Core t
* Managing on-chip space Memory

JIT Compiler

e Tiling

: Configs pArch Extensions L]
«» Near-Memory Memory

Only Bit-serial transpose

 Data alignment & layout

Dataflow
Representation

Plain C Code

* Portable binary

101

Simulation Methodology

Simulator
gemd with partial AVX-512 support

Hardware Configuration

64 Cores (8x8)
18 ways (16 SRAM arrays/way)
« 8KB SRAM arrays (256x256)

» L3 Total: 144MB

102

Fused Execution Speedup

10
3
Q.
-8 ° 5.1
5
C% 4 4.0
5 1.9
Baseline
, HENE ENEE SN SNEN NEEE ENEE BN BEEN BNEE BNEE BNN
O O O O . O O &
F FFE S e & S
S S S S S Ko Ko & &7 S
& & & N " & &
o) o)
" In-Core " Near-Memory | In-Memory I Infinity Stream
1 Cores e 5.6x over In-Core
. 18 wZ;esS(§6XS)RAM arrays/way) » L3 Total: 144MB Area 6.52% Energy Efficiency * 2.4x over Near-Memory
. 8KB SRAM arrays (256x256) Overhead * 1.6x over In-Memory

In-Core

Near-Memory

In-Memory

Infinity Stream

Case Study: PointNet++
[N Hl |

I[I I II I I Il In-Core Near-Memory In-Memory

O (faster) Normalized Time (slower) 1

L #F B

Furthest Sample ' ' Gather ' Multi-layer Perceptron ' Aggregate
Irregular memory access Irregula1 fremory access Matrix computations Element-wise max()

Stream
Memory Access Pattern

Tensor T

Vectorized Memory Access

Move

Virtual Vector Alignment

mv

Broadcast
Spatial Reuse

Global Lattice Space

Virtual Vector Lanes

In-Core

= Complex Control Flow

'

Memory

- Von Neumann Bottleneck

Infinity Stream

In-Memory

.= Massive Vector Processing

- Strict Alignment Req.

In-/Near-Memory Fusion

Sequential

Supports memory
Irregularity

Parallel

Extremely high
compute width

118

Near-Memory

£l

Memory
~~ Low Compute Width
6
. Hints 4.8

2.4

1.2

Runtime Tiling
Minimizes Network Traffic

= Complex Memory Patterns

Area

overhead

Energy
Efficiency
5.62X

Tensor Layout
Override

Table

Transpose
Unit

uArch Extensions

Fusion Speedup

5.1x
4.0x
1.9x
& S & S
\QO @Q’@ @Q’(Q C)\@
& NS . \(\’\&
S &

