
Zhengrong Wang1, Christopher Liu1, Aman Arora2, Lizy John2, Tony Nowatzki1

Infinity Stream
Portable and Programmer-Friendly In-/Near-Memory Fusion

1UCLA, 2UT Austin

ASPLOS 2023
Vancouver, Canada

1

Core

Memory

Lo
g

Sc
al

e

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Core Count

Memory Latency

• Understanding Latency Variation in Modern DRAM Chips: Experimental Characterization, Analysis, and Optimization

• Karl Rupp’s 48 Years of Microprocessor Trend

Von Neumann Bottleneck
Performance limited by memory bottleneck

2

Core

Memory

Lo
g

Sc
al

e

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Core Count

Memory Latency

• Understanding Latency Variation in Modern DRAM Chips: Experimental Characterization, Analysis, and Optimization

• Karl Rupp’s 48 Years of Microprocessor Trend

Von Neumann Bottleneck
Performance limited by memory bottleneck

Expensive data movement

3

In-Core

Memory

Near-Memory

Compute Paradigms

Von Neumann Model Spatially Local Simple Cores

! Supports complex control flow

" Von Neumann bottleneck

! Programs similar to in-core
 without control flow

" Limited parallelism

Core

Memory Memory

In-Memory
Massive Vector Processing

! Massive amounts of parallelism

" Difficult to program due to many
 restrictions

More Expressive
Less Parallelism

Less Expressive

More Parallelism

5

Gather AggregateMulti-layer Perceptron
Irregular memory access Element-wise max()Matrix computations

Furthest Sample Ball Query
Complex controlIrregular memory access

Example: PointNet++

Near-Memory In-Core Near-Memory In-Memory In-Core

Core

MemoryMemory MemoryMemory

Core

Memory

6

There is an Adoption Problem

7

Programming is Difficult

Core

Memory

Near-Memory Compute

In-Memory Compute

Mat matmul(Mat core_A, Mat core_B, Mat core_C):
 InMat in_A = inMemcpy(core_A, M * N, fromCore)
 InMat in_B = inMemcpy(core_B, M * N, fromCore)
 InMat in_C = inMalloc(M * N)
 for m in [0, M):
 for n in [0, N):
 InVec in_V = in_A[m][:] * in_B[:][c]
 in_V = inPartialReduce(+, in_V, rounds=3)
 NearVec near_V = nearMalloc(K)
 near_V = nearMemcpy(in_V, K / 2 / 2 / 2,
 fromIn)
 NearScalar near_dotpdt = nearReduce(near_V)
 core_C[m][n] = coreMemcpy(near_dotpdt,
 fromNear)

8

Mat matmul(Mat A, Mat B, Mat C):
 for m in [0, M):
 for n in [0, N):
 for k in [0, K):
 C[m][n] += A[m][k] * B[k][n]

Hide Hardware Details

Easier to program

Core

Memory

Near-Memory Compute

In-Memory Compute

9

Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Unified Abstraction µArch-specific
Optimizations

µArch ExtensionsPartitioning
Static vs Dynamic

Agnostically represents

1. In-core compute

2. In-memory compute

3. Near-memory compute

Portable binary without
exposing µArch details to

compiler

Hardware support for
compute paradigms

Specialize binary to take
advantage of µArch details

Outline

Near-Memory

12 3

4

11

Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Unified Abstraction µArch-specific
Optimizations

µArch ExtensionsPartitioning
Static vs Dynamic

Agnostically represents

1. In-core compute

2. In-memory compute

3. Near-memory compute

Portable binary without
exposing µArch details to

compiler

Hardware support for
compute paradigms

Specialize binary to take
advantage of µArch details

Outline

Near-Memory

12 3

4

12

C[i] = A[i] & B[i]

Near-Memory Compute

A

CB

Offload computation closer to the data

ld

flow ctrl

ld

fl
ow

 c
tr

l

offload

offload

of
fl

oa
d

Supports complex memory access patterns

with reduction capabilities

A

+ + +

B

++

+

Affine Patterns

e.g., A[2*i]

Indirect Patterns

e.g., B[A[i]]

Limitation: Lower compute width

Augment memory technology with compute

13

C[i] = A[i] & B[i]

In-Memory Compute
Augment memory technology with compute

A

CB

15

...

...

...

PEs (A op B)

W
or

dl
in

es
 (2

56
)

Bitlines (256)
C[i] = A[i] & B[i]

In-Memory Compute
Augment memory technology with compute

A

CB

SRAM Array
16

...

...

...

PEs (A op B)

W
or

dl
in

es
 (2

56
)

Bitlines (256)

SRAM Array

C[i] = A[i] & B[i]

In-Memory Compute
Augment memory technology with compute

Standard Data LayoutA

CB

17

...

...

...

PEs (A op B)

W
or

dl
in

es
 (2

56
)

Bitlines (256)
C[i] = A[i] & B[i]

In-Memory Compute
Augment memory technology with compute

A[i].LSB

A[i].MSB

B[i].LSB

B[i].MSB

C[i].LSB

C[i].MSB

SRAM Array

Bit-Serial Data Layout

Offers massive vector parallelism

Supported Operations
+ - * / % & | ^ << >>
sin cos exp log sqrt

Bitwise Operations

A

CB

18

...

...

...

PEs (A op B)

W
or

dl
in

es
 (2

56
)

Bitlines (256)

C[i] = A[i] & B[i]

In-Memory Compute
Augment memory technology with compute

Challenge: Requires data alignment & transpose

Bit-Serial Data Layout

A

C

B

A[i].LSB

A[i].MSB

B[i].LSB

B[i].MSB

C[i].LSB

C[i].MSB

SRAM Array

Offers massive vector parallelism

Supported Operations
+ - * / % & | ^ << >>
sin cos exp log sqrt

20

In-Memory Compute
Offers massive vector parallelism
Challenge: Requires data alignment & transpose

Near-Memory Compute
Supports complex memory access patterns
with reduction capabilities
Limitation: Lower compute width

Compute Paradigms

2. Fused In-/Near-Memory
Statically & dynamically take advantage of each
compute paradigm
• In-Memory: Large input size & element-wise compute

• Near-Memory: Small input size or irregular memory patterns

• Fusion of in-/near-memory

3. Portability
Target a large variety of microarchitectures with a
single binary

Programming
Considerations

1. Orchestration
Meet the requirements for each compute paradigm
• Data alignment

• Data layout & tiling

• Bit-serial transpose

• Managing on-chip space

Transparency

22

• In-Memory: Large input size & element-wise compute

• Near-Memory: Small input size or irregular memory patterns

• Fusion of in-/near-memory

2. Fused In-/Near-Memory
Statically & dynamically take advantage of each
compute paradigm

3. Portability
Target a large variety of microarchitectures with a
single binary

Programming
Considerations

1. Orchestration
Meet the requirements for each compute paradigm
• Data alignment

• Data layout & tiling

• Bit-serial transpose

• Managing on-chip space

Transparency
minimizes programmer burden

23

Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Unified Abstraction µArch-specific
Optimizations

µArch ExtensionsPartitioning
Static vs Dynamic

Agnostically represents

1. In-core compute

2. In-memory compute

3. Near-memory compute

Portable binary without
exposing µArch details to

compiler

Hardware support for
compute paradigms

Specialize binary to take
advantage of µArch details

Outline

Near-Memory

12 3

4

24

Dataflow Representation

In-Memory Compute

Near-Memory Compute

Fused In-/Near-Memory

• Memory access pattern

• Computation

• N-D Tensors

• Data alignment

• Spatial reuse

• Reduction operations

• Fusion

Sequential

mv bc

Parallel

25

a b c d e f g h

a b c d e f g h

Stream Dataflow Graph

Computation

N-D Tensors

Data alignment

Reduction operations

Spatial reuse

Fusion

Memory access pattern

1D Filter
for i in [0, N-1):
 B[i] = F[0] x A[i]

 + F[1] x A[i+1] b c d

a b c d e f

Memory Access
Pattern

A0encoded by Stream Node

A1encoded by Stream Nodee f g

g

h

26

Stream Dataflow Graph

A0 A1

x

F0 F1

x

+

B

N-D Tensors

Data alignment

Reduction operations

Spatial reuse

Fusion

Computation

Memory access pattern

1D Filter
for i in [0, N-1):
 B[i] = F[0] x A[i]

 + F[1] x A[i+1]

a b c d e f g ha b c d e f g a b c d e f g hb c d e f g h

28

Tensor Dataflow Graph

ah

A0 A1

x

F0 F1

x

+

B

Data alignment

Reduction operations

Spatial reuse

Fusion

N-D Tensors

Memory access pattern

Computation

1D Filter
for i in [0, N-1):
 B[i] = F[0] x A[i]

 + F[1] x A[i+1]

ga b c d e f hb c d e f g

Observation: contiguous memory access may be tensorized

But we need to map data to hardware

30

Tensor Dataflow Graph

Global Lattice Space
Each cell represents a virtual vector lane

Describes N-dimensional alignment

A0 A1

x

F0 F1

x

+

B

Reduction operations

Spatial reuse

Fusion

Data alignment

Memory access pattern

Computation

N-D Tensors

1D Filter
for i in [0, N-1):
 B[i] = F[0] x A[i]

 + F[1] x A[i+1]

ahga b c d e f hb c d e f g

Observation: contiguous memory access may be tensorized

la
ne

 8

la
ne

 1

la
ne

 2

la
ne

 3

la
ne

 4

la
ne

 5

la
ne

 6

la
ne

 7

Hardware Vector Processor

Maps

data → virtual vector lane

Maps

virtual vector lane →
physical vector lane

31

Tensor Dataflow Graph
1D Filter
for i in [0, N-1):
 B[i] = F[0] x A[i]

 + F[1] x A[i+1]

Global Lattice Space
Data alignment

Memory access pattern

Computation

N-D Tensors

Memory access is represented as a hyperrectangle

A0 A1

x

F0 F1

x

+

B

A0 A1

Reduction operations

Spatial reuse

Fusion

Each cell represents a virtual vector lane

Describes N-dimensional alignment

33

Tensor Dataflow Graph

mvMove Node realigns hyperrectangle

A0

Data alignment

Memory access pattern

Computation

N-D Tensors

1D Filter
for i in [0, N-1):
 B[i] = F[0] x A[i]

 + F[1] x A[i+1]

A0 A1

x

F0 F1

x

+

B

mv

A1

mv

1

Reduction operations

Spatial reuse

Fusion

Memory access is represented as a hyperrectangle

36

for m in [0, M):
 for k in [0, K):
 C[m] += A[m][k] * B[k]

Matrix-Vector Multiplication

Example

∙

A B

=

C

Reduction operations

Memory access pattern

Computation

N-D Tensors

Data alignment

Spatial reuse

Fusion 39

for m in [0, M):
 C[m] = sum(A[m][:] * B[k])

Matrix-Vector Multiplication

Vectorize

Example

∙

A B

=

C

Reduction operations

Spatial reuse

Fusion

Memory access pattern

Computation

N-D Tensors

Data alignment

40

Am B

x

Matrix-Vector Multiplication
for m in [0, M):
 C[m] = sum(A[m][:] * B[k])

Spatial

B

A0

Example

∙

A B

=

C

Reduction operations

Spatial reuse

Fusion

Memory access pattern

Computation

N-D Tensors

Data alignment

42

Am B

x

Matrix-Vector Multiplication
for m in [0, M):
 C[m] = sum(A[m][:] * B[k])

Spatial

Reduction operations

Spatial reuse

Fusion

Memory access pattern

Computation

N-D Tensors

Data alignment

B

A0

Example

∙

A B

=

C

43

Am B

x

Matrix-Vector Multiplication
for m in [0, M):
 C[m] = sum(A[m][:] * B[k])

Spatial

+ reduce
dim=0

Reduction operations

Spatial reuse

Fusion

Memory access pattern

Computation

N-D Tensors

Data alignment

B

A0

Example

∙

A B

=

C

44

Matrix-Vector Multiplication
for m in [0, M):
 C[m] = sum(A[m][:] * B[k])

Spatial

Am x B

Reduction operations

Spatial reuse

Fusion

Memory access pattern

Computation

N-D Tensors

Data alignment

0

1

2

Step

Wasted Parallelism

+

+

Am B

x

+ reduce
dim=0

v

reduce

Insufficient parallelism

+

Use near-memory to perform reduction

Reduction Tree

+ + +
47

A3

A2

A1

Matrix-Vector Multiplication
for m in [0, M):
 C[m] = sum(A[m][:] * B[k])

Spatial

Idea: Expose more parallelism through spatial reuse

Example

B

A0

∙

A B

=

C

Spatial reuse

Memory access pattern

Computation

N-D Tensors

Data alignment

Reduction operations

Fusion

Am B

x

+ reduce
dim=0

v

reduce+

50

Matrix-Vector Multiplication
for m in [0, M):
 C[m] = sum(A[m][:] * B[k])

Spatial

Idea: Expose more parallelism through spatial reuse

∙ B

A2

A3

A0

A1

Example

∙ B

∙ B

∙ B

Duplicate

Spatial reuse

Fusion

Am B

x

+ reduce
dim=0

v

reduce+

Memory access pattern

Computation

N-D Tensors

Data alignment

Reduction operations

52

Matrix-Vector Multiplication
for m in [0, M):
 C[m] = sum(A[m][:] * B[k])

Spatial

Idea: Expose more parallelism through spatial reuse

∙ B

A2

A3

A0

A1

Example

∙ B

∙ B

∙ B

Duplicate

bcBroadcast Node captures spatial reuse

Spatial reuse

Fusion

v

Am B

x

+ reduce
dim=0

bc
count=4
dist=0

reduce+

Memory access pattern

Computation

N-D Tensors

Data alignment

Reduction operations

55

Matrix-Vector Multiplication
for m in [0, M):
 C[m] = sum(A[m][:] * B[k])

Spatial

Idea: Expose more parallelism through spatial reuse

bcBroadcast Node captures spatial reuse

B

Spatial reuse

Fusion

v

Am B

x

+ reduce
dim=0

bc
count=4
dist=0

reduce+

Memory access pattern

Computation

N-D Tensors

Data alignment

Reduction operations

56

Matrix-Vector Multiplication
for m in [0, M):
 C[m] = sum(A[m][:] * B[k])

Spatial

Idea: Expose more parallelism through spatial reuse

bcBroadcast Node captures spatial reuse

B

bccount=4
dist=0

Spatial reuse

Fusion

v

Am B

x

+ reduce
dim=0

bc
count=4
dist=0

reduce+

Memory access pattern

Computation

N-D Tensors

Data alignment

Reduction operations

57

Stream
Reduction Stream Store as Tensor

+

Parallel

Sequential

+

Sequential

Parallel
Fusion

Memory access pattern

Computation

N-D Tensors

Data alignment

Reduction operations

Spatial reuse

Tensor

Irregular memory access

Contiguous memory

Set up

Load as Stream

Parallel

Sequential

+

Accesses tensor data with
any memory access pattern
supported by streams

reduce

reduce

58

vectorized compute phase

irregular memory phase

irregular memory phase

vectorized compute phase

Special case of
Load as Stream

Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Unified Abstraction µArch-specific
Optimizations

µArch ExtensionsPartitioning
Static vs Dynamic

Agnostically represents

1. In-core compute

2. In-memory compute

3. Near-memory compute

Portable binary without
exposing µArch details to

compiler

Hardware support for
compute paradigms

Specialize binary to take
advantage of µArch details

Outline

Near-Memory

12 3

4

59

Mapping to Hardware

Global Lattice SRAM Banks

60

In-Memory Organization

array array array array array array array array

array array array array array array array array

...

...
...

PEs (A op B)

W
or

dl
in

es
 (2

56
)

Bitlines (256)

Each last-level cache bank
consists of many in-memory

SRAM arraysQuestion
What are the effects of tiling on

on inter-bank traffic?

61

In-Memory Organization

array array

array array

Abstract many SRAM arrays
into a single large SRAM arrayQuestion

What are the effects of tiling on
on inter-bank traffic?

62

array

Bank Bank

Bank Bank
Lattice cells are a sub-matrix of

some larger matrix

array

arrayarray

64

R2R1

R4R3

array

Bank Bank

Bank Bank

array

arrayarray

67

R2
Q2

R1
Q1

R4
Q4

R3
Q3

array

Bank Bank

Bank Bank

array

arrayarray

71

mv1

R2
Q2

R1
Q1

R4
Q4

R3
Q3

array

Bank Bank

Bank Bank

array

arrayarray

74

mv1

R2
Q2

R1
Q1

R4
Q4

R3
Q3

Unmapped data

array

Bank Bank

Bank Bank

array

arrayarray

76

R2
Q2

R1
Q1

R4
Q4

R3
Q3

mv1

Unmapped data

array

Bank Bank

Bank Bank

array

arrayarray

78

R2
Q2

R1
Q1

R4
Q4

R3
Q3

mv1

Square
Inter-Bank Data Movement

Row

<

Unmapped data

array

Bank Bank

Bank Bank

array

arrayarray

81

R2
Q2

R1
Q1

R4
Q4

R3
Q3

mv1

Unmapped data

array

Bank Bank

Bank Bank

array

arrayarray

84

R2
Q2

R1
Q1

R4
Q4

R3
Q3

mv1

Square
Inter-Bank Data Movement

Row

>

Unmapped data

array

Bank Bank

Bank Bank

array

arrayarray

87

Inter-bank Data Movement
depends on

Tiling Size + Move Direction

88

Static Dynamic

Compiler Runtime &
JIT Compiler

Layout Hints

TTensor is moved along dimensions d1, d2, d3, … ATensors B& are used together

Inter-bank Data Movement
depends on

Tiling Size + Move Direction

Best tiling size that minimizes inter-bank data movement Tensors A & B must have matching tiling size
1. Inter-Bank Traffic: 2. Data Alignment:

89

Layout Override Table
Tracks which arrays are
currently transposed

Tensor Transpose Unit
Transposes array elements
to and from bit-serial format

Ro
ut

er

LOT

TTU

Tags

Stream
Engine

Tensor
Controller

L1 $

Tensor
ControllerStream

Engine LO
T

Ta
gs

Core
L2 $

L3 Way !
SRAM
Array

SRAM
Array

SRAM
Array

SRAM
Array

SRAM
Array

SRAM
Array

SRAM
Array

SRAM
Array

Microarchitecture Extensions

More details in paper90

Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Unified Abstraction µArch-specific
Optimizations

µArch ExtensionsPartitioning
Static vs Dynamic

Agnostically represents

1. In-core compute

2. In-memory compute

3. Near-memory compute

Portable binary without
exposing µArch details to

compiler

Hardware support for
compute paradigms

Specialize binary to take
advantage of µArch details

Outline

Near-Memory

12 3

4

91

Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

µArch-specific
Optimizations

µArch Support

Hardware support for
compute paradigms

Specialize binary to take
advantage of µArch details

Outline

Near-Memory

Static Dynamic

Unified Abstraction

Agnostically represents

1. In-core compute

2. In-memory compute

3. Near-memory compute

92

Compiler

JIT CompilerµArch Extensions

Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory
Unified Abstraction

µArch-specific
Optimizations

µArch ExtensionsAgnostically represents

1. In-core compute

2. In-memory compute

3. Near-memory compute

Hardware support for
compute paradigms

Specialize binary to take
advantage of µArch details

Key Challenges

Near-Memory

Static Dynamic

93

Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Outline

Near-Memory

Static Dynamic

Compiler JIT Compiler

µArch Extensions

Runtime

94

Requirements

Plain C Code

Static Dynamic

• Data alignment & layout

• Portable binary

• Decide between in-core, in-/near-memory, and fusion

• Managing on-chip space

• Tiling

• Bit-serial transpose

Compiler JIT Compiler

µArch Extensions

Runtime

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Near-Memory

95

Plain C Code

Static Dynamic

Compiler

JIT Compiler

µArch Extensions

Runtime

• Data alignment & layout

Dataflow
Representation

• Portable binary

In-Core
Only

Configs

Runtime

•Decide between in-core,
in-/near-memory, and fusion

•Managing on-chip space

• Tiling

• Bit-serial transpose

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Near-Memory

The Infinity Stream Approach

101

• 64 Cores (8x8)

• 18 ways (16 SRAM arrays/way)

• 8KB SRAM arrays (256x256)

L3 Total: 144MB

Simulation Methodology

Simulator

Hardware Configuration

gem5 with partial AVX-512 support

102

Fused Execution Speedup
Sp

ee
du

p

0

2

4

6

8

10

ste
nc

il1d

ste
nc

il2d

ste
nc

il3d
dwt2d

ga
us

s_e
lim

co
nv

2d

co
nv

3d mm

km
ea

ns

ga
the

r_m
lp

ge
om

ea
n

Baseline

In-Core Near-Memory In-Memory Infinity Stream

• 64 Cores (8x8)

• 18 ways (16 SRAM arrays/way)

• 8KB SRAM arrays (256x256)

L3 Total: 144MB

1.9

4.0
5.1

6.52%

overhead

Area Energy Efficiency
• 5.6x over In-Core

• 2.4x over Near-Memory

• 1.6x over In-Memory 104

Case Study: PointNet++

Aggregate
Element-wise max()

Multi-layer Perceptron
Matrix computations

Gather
Irregular memory access

Ball Query
Complex control

Furthest Sample
Irregular memory access

0 1Normalized Time

In-Core

Near-Memory

In-Memory

Infinity Stream

(faster) (slower)

In-Core In-MemoryNear-Memory

117

Infinity StreambcBroadcast
Spatial Reuse

Global Lattice Space
Virtual Vector Lanes

mvMove
Virtual Vector Alignment

TTensor
Vectorized Memory Access

SStream
Memory Access Pattern

0

1.2

2.4

3.6

4.8

6

In-
Core

Nea
r-M

em
ory

In-
Mem

ory

Infi
nit

y S
tre

am

1.9x

4.0x
5.1x

Fusion Speedup

6.52%

overhead

Area

Energy
Efficiency

5.62x

In-Core

Core

Memory

! Complex Control Flow

" Von Neumann Bottleneck

In-Memory

Memory

! Massive Vector Processing

" Strict Alignment Req.

Near-Memory

Memory

! Complex Memory Patterns

" Low Compute Width

In-/Near-Memory Fusion
Sequential Parallel

Supports memory
irregularity

Extremely high
compute width Runtime Tiling

Hints

JIT
Compiler

Minimizes Network Traffic

uArch Extensions

Tensor
Transpose

Unit

Layout
Override

Table

118

