Infinity Stream Portable and Programmer-Friendly In-/Near-Memory Fusion

Zhengrong Wang¹, <u>Christopher Liu¹</u>, Aman Arora², Lizy John², Tony Nowatzki¹ ¹UCLA, ²UT Austin

Von Neumann Bottleneck

Performance limited by memory bottleneck

Memory

Von Neumann Bottleneck

Performance limited by memory bottleneck

Memory

Compute Paradigms

More Expressive Less Parallelism

de Supports complex control flow

Von Neumann bottleneck

Programs similar to in-core without control flow

Less Expressive More Parallelism

Near-Memory

Spatially Local Simple Cores

In-Memory

Massive Vector Processing

Limited parallelism

- Massive amounts of parallelism
- **Difficult to program due to many** restrictions

Example: PointNet++

There is an Adoption Problem

Programming is Difficult

Mat matmul(Mat core_A, Mat core_B, Mat core_C): InMat in_A = inMemcpy(core_A, M * N, fromCore) InMat in_B = inMemcpy(core_B, M * N, fromCore) InMat in_C = inMalloc(M * N) for m in [0, M): for n in [0, N): InVec in_V = in_A[m][:] * in_B[:][c] in_V = inPartialReduce(+, in_V, rounds=3) NearVec near_V = nearMalloc(K) near_V = nearMemcpy(in_V, K / 2 / 2 / 2, fromIn) NearScalar near_dotpdt = nearReduce(near_V) core_C[m][n] = coreMemcpy(near_dotpdt, fromNear)

Hide Hardware Details


```
Mat matmul(Mat A, Mat B, Mat C):
  for m in [0, M):
    for n in [0, N):
      for k in [0, K):
        C[m][n] += A[m][k] * B[k][n]
```

Easier to program

Outline

Unified Abstraction Agnostically represents 1. In-core compute 2. In-memory compute 3. Near-memory compute Plain C Code Partitioning Static vs Dynamic

Portable binary without exposing µArch details to compiler

Specialize binary to take advantage of µArch details

µArch Extensions

Hardware support for compute paradigms

Near-Memory Compute

Offload computation closer to the data

Supports complex memory access patterns

with **reduction** capabilities

Limitation: Lower compute width

Augment memory technology with compute

C[i] = A[i] & B[i]

Augment memory technology with compute

SRAM Array

Augment memory technology with compute

C[i] = A[i] & B[i]

Standard Data Layout

Bitlines (256)

Augment memory technology with compute

C[i] = A[i] & B[i]

Bit-Serial Data Layout

Bitlines (256)

Supported Operations ____ +-*/%&| ^ << >> sin cos exp log sqrt Offers massive vector parallelism (256) Wordlines PEs (A op B) **Bitwise Operations**

SRAM Array

Augment memory technology with compute

Bit-Serial Data Layout

Compute Paradigms

In-Memory Compute

Offers **massive** vector parallelism

Challenge: Requires data alignment & transpose

Near-Memory Compute

Supports complex memory access patterns with **reduction** capabilities

Limitation: Lower compute width

Programming Considerations

1. Orchestration

Meet the requirements for each compute paradigm

- Data alignment \bullet
- Data layout & tiling
- Bit-serial transpose
- Managing on-chip space

2. Fused In-/Near-Memory

Statically & dynamically take advantage of each compute paradigm

- **In-Memory:** Large input size & element-wise compute
- **Near-Memory:** Small input size or irregular memory patterns •
- **Fusion** of in-/near-memory

3. Portability

Target a large variety of microarchitectures with a single binary

Programming Considerations

1. Orchestration

Meet the requirements for each compute paradigm

- Data alignment ullet
- Data layout & tiling ullet
- Bit-serial transpose
 - Managing on-chip space

2. Fused In-/Near-Memory

Statically & dynamically take advantage of each compute paradigm

- **In-Memory:** Large input size & element-wise compute •
- **Near-Memory:** Small input size or irregular memory patterns \bullet
- **Fusion** of in-/near-memory

3. Portability

Target a large variety of microarchitectures with a single binary

Transparency minimizes programmer burden

Plain C Code

Unified Abstraction

Agnostically represents 1. In-core compute 2. In-memory compute 3. Near-memory compute

> Partitioning Static vs Dynamic

Portable binary without exposing µArch details to compiler

Specialize binary to take advantage of µArch details

µArch Extensions

Hardware support for compute paradigms

Dataflow Representation

Near-Memory Compute

- Memory access pattern
- Computation

In-Memory Compute

- N-D Tensors
- Data alignment
- Spatial reuse

Fused In-/Near-Memory

- Reduction operations
- Fusion

Stream Dataflow Graph

• Memory access pattern

1D Filter for i in [0, N-1): B[i] = F[0] × A[i] + F[1] × A[i+1]

Computation
 N-D Tensors
 Data alignment
 Reduction operations
 Spatial reuse
 Fusion

Stream Dataflow Graph

• Memory access pattern

1D Filter for i in [0, N-1): B[i] = F[0] × A[i] + F[1] × A[i+1]

N-D Tensors
 Data alignment
 Reduction operations
 Spatial reuse
 Fusion

Computation

 Memory access pattern Computation 0

N-D Tensors

0

1D Filter for i in [0, N-1): $B[i] = F[0] \times A[i]$

+ $F[1] \times A[i+1]$

Data alignment 0 **Reduction operations** Ο Spatial reuse 0 Fusion 0

Observation: contiguous memory access may be tensorized

But we need to map data to hardware

Memory access pattern

- Computation
- **N-D** Tensors 0

1D Filter

for i in [0, N-1): $B[i] = F[0] \times A[i]$

+ F[1] × A[i+1]

Global Lattice Space

Data alignment

0

Each cell represents a virtual vector lane

Describes N-dimensional alignment

..........

Reduction operations 0 Spatial reuse 0 Fusion 0

Observation: contiguous memory access may be tensorized

Memory access pattern

- Computation 0
- N-D Tensors 0

1D Filter

for i in [0, N-1): $B[i] = F[0] \times A[i]$

Data alignment

0

Ο

0

Ο

Memory access is represented as a hyperrectangle

Memory access pattern

- Computation 0
- N-D Tensors Ο

1D Filter

for i in [0, N-1):

Memory access is represented as a hyperrectangle

.

- Memory access pattern
- Computation 0 N-D Tensors 0
- Data alignment 0

for m in [0, M): for k in [0, K): C[m] += A[m][k] * B[k]

Example

 \bullet

Α

В

Spatial reuse Fusion

0

0

- Memory access pattern
- ComputationN-D Tensors
- N-D lensors
- o Data alignment

for m in [0, M): C[m] = sum(A[m][:] * B[k])

Vectorize

Example

• Reduction operations

Α

В

Spatial reuse Fusion

0

Ξ

- Memory access patternComputation
- N-D Tensors
- o Data alignment

for m in [0, M): Spatial
 C[m] = sum(A[m][:] * B[k])

Example

• Reduction operations

Α

В

Spatial reuse Fusion

0

=

- Memory access pattern Computation 0
- N-D Tensors 0
- Data alignment 0

for m in [0, M): Spatial C[m] = sum(A[m][:] * B[k])

Example

Reduction operations 0

В

Spatial reuse Fusion

0

=

- Memory access pattern Computation 0
- N-D Tensors 0
- Data alignment 0

for m in [0, M): Spatial C[m] = sum(A[m][:] * B[k])

Example

Reduction operations 0

В

Spatial reuse Fusion

0

=

- Memory access pattern
- Computation 0 N-D Tensors 0
- Data alignment 0

for m in [0, M): Spatial
 C[m] = sum(A[m][:] * B[k])

Reduction Tree

 $A_m \times B$ ╋ +

Reduction operations 0

> Spatial reuse Fusion

- Memory access patternComputation
- N-D Tensors
- o Data alignment
- Reduction operations

Spatial

for m in [0, M):
 C[m] = sum(A[m][:] * B[k])

Idea: Expose more parallelism through spatial reuse

Example

Spatial reuse

- Memory access pattern 0
- Ο
- 0
- **Reduction operations** Ο

- Memory access pattern 0
- 0
- Data alignment 0
- **Reduction operations** Ο

- Memory access pattern
- 0
- 0
- Ο

- Memory access pattern 0
- 0
- 0
- Ο

Ο

Unified Abstraction Agnostically represents 1. In-core compute 2. In-memory compute 3. Near-memory compute **Plain C Code** Partitioning Static vs Dynamic

Portable binary without exposing µArch details to compiler

Mapping to Hardware

Global Lattice

SRAM Banks

In-Memory Organization

Question

What are the effects of tiling on on inter-bank traffic?

Each last-level cache bank consists of many in-memory SRAM arrays

In-Memory Organization

array array

Question

What are the effects of tiling on on inter-bank traffic?

Abstract many SRAM arrays into a single large SRAM array

Lattice cells are a sub-matrix of some larger matrix

Inter-Bank Data Movement

<

Row

Square

Q4

Inter-Bank Data Movement

Row

Square

Inter-bank Data Movement depends on Tiling Size + Move Direction

Inter-bank Data Movement depends on **Tiling Size + Move Direction**

Static

Compiler

1. Inter-Bank Traffic:

2. Data Alignment: Best tiling size that minimizes inter-bank data movement Tensors A & B must have matching tiling size Tensors (A) is moved along dimensions d_1 , d_2 , d_3 , ... are used together Tensor

Dynamic

Runtime & JIT Compiler

Layout Hints

Microarchitecture Extensions

Tensor Transpose Unit

Transposes array elements to and from bit-serial format

Layout Override Table

Tracks which arrays are currently transposed

More details in paper

Unified Abstraction Agnostically represents 1. In-core compute 2. In-memory compute 3. Near-memory compute **Plain C Code**

4

Partitioning Static vs Dynamic

Portable binary without exposing µArch details to compiler

Specialize binary to take advantage of µArch details

µArch Extensions

Hardware support for compute paradigms

Static Plain C Code **Unified Abstraction** Agnostically represents 1. In-core compute 2. In-memory compute 3. Near-memory compute

Static

Plain C Code

Unified Abstraction

Agnostically represents 1. In-core compute 2. In-memory compute 3. Near-memory compute

Key Challenges

Data alignment & layout
Portable binary
Decide between in-core, in-/near-memory, and fusion
Managing on-chip space
Tiling
Bit-serial transpose

Simulator

gem5 with partial AVX-512 support

Hardware Configuration

- 64 Cores (8x8)
- 18 ways (16 SRAM arrays/way)
- 8KB SRAM arrays (256x256)

Simulation Methodology

Fused Execution Speedup

• 8KB SRAM arrays (256x256)

