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Performance limited by memory bottleneck

Expensive data movement
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In-Core

Memory

Near-Memory

Compute Paradigms

Von Neumann Model Spatially Local Simple Cores

! Supports complex control flow

" Von Neumann bottleneck

! Programs similar to in-core 
     without control flow

" Limited parallelism

Core

Memory Memory

In-Memory
Massive Vector Processing

! Massive amounts of parallelism

" Difficult to program due to many 
     restrictions

More Expressive 
Less Parallelism

Less Expressive

More Parallelism
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Gather AggregateMulti-layer Perceptron
Irregular memory access Element-wise max()Matrix computations

Furthest Sample Ball Query
Complex controlIrregular memory access

Example: PointNet++

Near-Memory In-Core Near-Memory In-Memory In-Core

Core

MemoryMemory MemoryMemory

Core

Memory
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There is an Adoption Problem
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Programming is Difficult

Core

Memory

Near-Memory Compute

In-Memory Compute

Mat matmul(Mat core_A, Mat core_B, Mat core_C): 
  InMat in_A = inMemcpy(core_A, M * N, fromCore) 
  InMat in_B = inMemcpy(core_B, M * N, fromCore) 
  InMat in_C = inMalloc(M * N) 
  for m in [0, M): 
    for n in [0, N): 
      InVec in_V = in_A[m][:] * in_B[:][c] 
      in_V = inPartialReduce(+, in_V, rounds=3) 
      NearVec near_V = nearMalloc(K) 
      near_V = nearMemcpy(in_V, K / 2 / 2 / 2, 
                          fromIn) 
      NearScalar near_dotpdt = nearReduce(near_V) 
      core_C[m][n] = coreMemcpy(near_dotpdt,  
                                fromNear)

8



Mat matmul(Mat A, Mat B, Mat C): 
  for m in [0, M): 
    for n in [0, N): 
      for k in [0, K): 
        C[m][n] += A[m][k] * B[k][n]

Hide Hardware Details

Easier to program 

Core

Memory

Near-Memory Compute

In-Memory Compute
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Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Unified Abstraction µArch-specific 
Optimizations

µArch ExtensionsPartitioning  
Static vs Dynamic

Agnostically represents

1. In-core compute


2. In-memory compute

3. Near-memory compute

Portable binary without 
exposing µArch details to 

compiler

Hardware support for 
compute paradigms

Specialize binary to take 
advantage of µArch details 
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Near-Memory
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C[i] = A[i] & B[i]

Near-Memory Compute

A

CB

Offload computation closer to the data

ld

flow ctrl
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tr
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offload

offload
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fl
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d

Supports complex memory access patterns

with reduction capabilities

A

+ + +

B

++

+

Affine Patterns

e.g., A[2*i]

Indirect Patterns

e.g., B[A[i]]

Limitation: Lower compute width

Augment memory technology with compute
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C[i] = A[i] & B[i]

In-Memory Compute
Augment memory technology with compute

A

CB
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SRAM Array
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In-Memory Compute
Augment memory technology with compute

Standard Data LayoutA

CB
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PEs (A op B)
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 (2
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)

Bitlines (256)
C[i] = A[i] & B[i]

In-Memory Compute
Augment memory technology with compute

A[i].LSB

A[i].MSB

B[i].LSB

B[i].MSB

C[i].LSB

C[i].MSB

SRAM Array

Bit-Serial Data Layout

Offers massive vector parallelism

Supported Operations
+ - * / % & | ^ << >> 
sin cos exp log sqrt

Bitwise Operations

A

CB
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Bitlines (256)

C[i] = A[i] & B[i]

In-Memory Compute
Augment memory technology with compute

Challenge: Requires data alignment & transpose

Bit-Serial Data Layout

A

C

B

A[i].LSB

A[i].MSB

B[i].LSB

B[i].MSB

C[i].LSB

C[i].MSB

SRAM Array

Offers massive vector parallelism

Supported Operations
+ - * / % & | ^ << >> 
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In-Memory Compute
Offers massive vector parallelism
Challenge: Requires data alignment & transpose

Near-Memory Compute
Supports complex memory access patterns 
with reduction capabilities
Limitation: Lower compute width

Compute Paradigms

2. Fused In-/Near-Memory
Statically & dynamically take advantage of each 
compute paradigm
• In-Memory: Large input size & element-wise compute

• Near-Memory: Small input size or irregular memory patterns

• Fusion of in-/near-memory

3. Portability
Target a large variety of microarchitectures with a 
single binary

Programming 
Considerations

1. Orchestration
Meet the requirements for each compute paradigm
• Data alignment

• Data layout & tiling


• Bit-serial transpose

• Managing on-chip space

Transparency 
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• In-Memory: Large input size & element-wise compute

• Near-Memory: Small input size or irregular memory patterns

• Fusion of in-/near-memory

2. Fused In-/Near-Memory
Statically & dynamically take advantage of each 
compute paradigm

3. Portability
Target a large variety of microarchitectures with a 
single binary

Programming 
Considerations

1. Orchestration
Meet the requirements for each compute paradigm
• Data alignment

• Data layout & tiling


• Bit-serial transpose

• Managing on-chip space

Transparency 
minimizes programmer burden
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Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Unified Abstraction µArch-specific 
Optimizations

µArch ExtensionsPartitioning  
Static vs Dynamic

Agnostically represents

1. In-core compute


2. In-memory compute

3. Near-memory compute

Portable binary without 
exposing µArch details to 

compiler

Hardware support for 
compute paradigms

Specialize binary to take 
advantage of µArch details 

Outline

Near-Memory
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Dataflow Representation

In-Memory Compute

Near-Memory Compute

Fused In-/Near-Memory

• Memory access pattern

• Computation

• N-D Tensors

• Data alignment

• Spatial reuse

• Reduction operations

• Fusion

Sequential

mv bc

Parallel
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a b c d e f g h

a b c d e f g h

Stream Dataflow Graph

Computation

N-D Tensors


Data alignment

Reduction operations


Spatial reuse

Fusion

Memory access pattern

1D Filter
for i in [0, N-1):
  B[i] = F[0] x A[i  ] 

       + F[1] x A[i+1] b c d

a b c d e f

Memory Access 
Pattern

A0encoded by Stream Node

A1encoded by Stream Nodee f g

g

h
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Stream Dataflow Graph

A0 A1

x

F0 F1

x

+

B

N-D Tensors

Data alignment


Reduction operations

Spatial reuse


Fusion

Computation

Memory access pattern

1D Filter
for i in [0, N-1):
  B[i] = F[0] x A[i  ] 

       + F[1] x A[i+1]

a b c d e f g ha b c d e f g a b c d e f g hb c d e f g h
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Tensor Dataflow Graph

ah

A0 A1

x

F0 F1

x

+

B

Data alignment

Reduction operations


Spatial reuse

Fusion

N-D Tensors

Memory access pattern

Computation

1D Filter
for i in [0, N-1):
  B[i] = F[0] x A[i  ] 

       + F[1] x A[i+1]

ga b c d e f hb c d e f g

Observation: contiguous memory access may be tensorized

But we need to map data to hardware
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Tensor Dataflow Graph

Global Lattice Space
Each  cell  represents a virtual vector lane

Describes N-dimensional alignment
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Reduction operations

Spatial reuse


Fusion

Data alignment

Memory access pattern

Computation

N-D Tensors

1D Filter
for i in [0, N-1):
  B[i] = F[0] x A[i  ] 

       + F[1] x A[i+1]

ahga b c d e f hb c d e f g

Observation: contiguous memory access may be tensorized
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Hardware Vector Processor

Maps

data → virtual vector lane

Maps

virtual vector lane → 
physical vector lane

31



Tensor Dataflow Graph
1D Filter
for i in [0, N-1):
  B[i] = F[0] x A[i  ] 

       + F[1] x A[i+1]

Global Lattice Space
Data alignment

Memory access pattern

Computation

N-D Tensors

Memory access is represented as a hyperrectangle

A0 A1

x

F0 F1

x

+

B

A0 A1

Reduction operations

Spatial reuse


Fusion

Each  cell  represents a virtual vector lane

Describes N-dimensional alignment
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Tensor Dataflow Graph

mvMove Node realigns hyperrectangle

A0

Data alignment

Memory access pattern

Computation

N-D Tensors

1D Filter
for i in [0, N-1):
  B[i] = F[0] x A[i  ] 

       + F[1] x A[i+1]

A0 A1

x

F0 F1

x

+

B

mv

A1

mv

1

Reduction operations

Spatial reuse


Fusion

Memory access is represented as a hyperrectangle
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for m in [0, M): 
  for k in [0, K): 
    C[m] += A[m][k] * B[k]

Matrix-Vector Multiplication

Example

∙

A B

=

C

Reduction operations

Memory access pattern

Computation

N-D Tensors


Data alignment

Spatial reuse

Fusion 39



for m in [0, M): 
  C[m] = sum(A[m][:] * B[k])

Matrix-Vector Multiplication

Vectorize

Example

∙

A B

=

C

Reduction operations

Spatial reuse

Fusion

Memory access pattern

Computation

N-D Tensors


Data alignment

40



Am B

x

Matrix-Vector Multiplication
for m in [0, M): 
  C[m] = sum(A[m][:] * B[k])

Spatial

B

A0

Example

∙

A B

=

C

Reduction operations

Spatial reuse

Fusion

Memory access pattern

Computation

N-D Tensors


Data alignment
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Am B

x

Matrix-Vector Multiplication
for m in [0, M): 
  C[m] = sum(A[m][:] * B[k])

Spatial

Reduction operations

Spatial reuse

Fusion

Memory access pattern

Computation

N-D Tensors


Data alignment

B

A0

Example

∙

A B

=

C
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Am B

x

Matrix-Vector Multiplication
for m in [0, M): 
  C[m] = sum(A[m][:] * B[k])

Spatial

+ reduce 
dim=0

Reduction operations

Spatial reuse

Fusion

Memory access pattern

Computation

N-D Tensors


Data alignment

B

A0

Example

∙

A B

=

C
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Matrix-Vector Multiplication
for m in [0, M): 
  C[m] = sum(A[m][:] * B[k])

Spatial

Am x B

Reduction operations

Spatial reuse

Fusion

Memory access pattern

Computation

N-D Tensors


Data alignment

0

1

2

Step

Wasted Parallelism

+

+

Am B

x

+ reduce 
dim=0

v

reduce

Insufficient parallelism

+

Use near-memory to perform reduction

Reduction Tree

+ + +
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A3

A2

A1

Matrix-Vector Multiplication
for m in [0, M): 
  C[m] = sum(A[m][:] * B[k])

Spatial

Idea: Expose more parallelism through spatial reuse

Example

B

A0

∙

A B

=

C

Spatial reuse

Memory access pattern

Computation

N-D Tensors


Data alignment

Reduction operations

Fusion

Am B

x

+ reduce 
dim=0

v

reduce+
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Matrix-Vector Multiplication
for m in [0, M): 
  C[m] = sum(A[m][:] * B[k])

Spatial

Idea: Expose more parallelism through spatial reuse

∙ B

A2

A3

A0

A1

Example

∙ B

∙ B

∙ B

Duplicate

Spatial reuse

Fusion

Am B

x

+ reduce 
dim=0

v

reduce+

Memory access pattern

Computation

N-D Tensors


Data alignment

Reduction operations
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Matrix-Vector Multiplication
for m in [0, M): 
  C[m] = sum(A[m][:] * B[k])

Spatial

Idea: Expose more parallelism through spatial reuse

∙ B

A2

A3

A0

A1

Example

∙ B

∙ B

∙ B

Duplicate

bcBroadcast Node captures spatial reuse

Spatial reuse

Fusion

v

Am B

x

+ reduce 
dim=0

bc
count=4 
dist=0

reduce+

Memory access pattern

Computation

N-D Tensors


Data alignment

Reduction operations
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Matrix-Vector Multiplication
for m in [0, M): 
  C[m] = sum(A[m][:] * B[k])

Spatial

Idea: Expose more parallelism through spatial reuse

bcBroadcast Node captures spatial reuse

B

Spatial reuse

Fusion

v

Am B

x

+ reduce 
dim=0

bc
count=4 
dist=0

reduce+

Memory access pattern

Computation

N-D Tensors


Data alignment

Reduction operations
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Matrix-Vector Multiplication
for m in [0, M): 
  C[m] = sum(A[m][:] * B[k])

Spatial

Idea: Expose more parallelism through spatial reuse

bcBroadcast Node captures spatial reuse

B

bccount=4 
dist=0

Spatial reuse

Fusion

v

Am B

x

+ reduce 
dim=0

bc
count=4 
dist=0

reduce+

Memory access pattern

Computation

N-D Tensors


Data alignment

Reduction operations
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Stream
Reduction Stream Store as Tensor

+

Parallel

Sequential

+

Sequential

Parallel
Fusion

Memory access pattern

Computation

N-D Tensors


Data alignment

Reduction operations


Spatial reuse

Tensor

Irregular memory access

Contiguous memory

Set up

Load as Stream

Parallel

Sequential

+

Accesses tensor data with 
any memory access pattern 
supported by streams 

reduce

reduce
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vectorized compute phase

irregular memory phase

irregular memory phase

vectorized compute phase

Special case of 
Load as Stream



Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Unified Abstraction µArch-specific 
Optimizations

µArch ExtensionsPartitioning  
Static vs Dynamic

Agnostically represents

1. In-core compute


2. In-memory compute

3. Near-memory compute

Portable binary without 
exposing µArch details to 

compiler

Hardware support for 
compute paradigms

Specialize binary to take 
advantage of µArch details 

Outline

Near-Memory
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Mapping to Hardware

Global Lattice SRAM Banks
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In-Memory Organization

array array array array array array array array

array array array array array array array array

...

...
...

PEs (A op B)

W
or
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 (2

56
)

Bitlines (256)

Each last-level cache bank 
consists of many in-memory 

SRAM arraysQuestion 
What are the effects of tiling on 

on inter-bank traffic?
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In-Memory Organization

array array

array array

Abstract many SRAM arrays 
into a single large SRAM arrayQuestion 

What are the effects of tiling on 
on inter-bank traffic?
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array

Bank Bank

Bank Bank
Lattice cells are a sub-matrix of 

some larger matrix

array

arrayarray
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R2R1

R4R3

array

Bank Bank

Bank Bank

array

arrayarray
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R2
Q2

R1
Q1

R4
Q4

R3
Q3

array

Bank Bank

Bank Bank

array

arrayarray
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mv1

R2
Q2

R1
Q1

R4
Q4

R3
Q3

array

Bank Bank

Bank Bank

array

arrayarray
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mv1

R2
Q2

R1
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R4
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R3
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Unmapped data

array

Bank Bank

Bank Bank

array

arrayarray
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mv1

Unmapped data

array

Bank Bank

Bank Bank

array

arrayarray
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R2
Q2

R1
Q1

R4
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R3
Q3

mv1

Square
Inter-Bank Data Movement

Row

<

Unmapped data

array

Bank Bank

Bank Bank

array

arrayarray
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Bank Bank
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R2
Q2

R1
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R4
Q4

R3
Q3

mv1

Square
Inter-Bank Data Movement

Row

>

Unmapped data

array

Bank Bank

Bank Bank

array

arrayarray
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Inter-bank Data Movement 
depends on 

Tiling Size + Move Direction
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Static Dynamic

Compiler Runtime & 
JIT Compiler

Layout Hints

TTensor is moved along dimensions d1, d2, d3, … ATensors B& are used together

Inter-bank Data Movement 
depends on 

Tiling Size + Move Direction

Best tiling size that minimizes inter-bank data movement Tensors A & B must have matching tiling size
1. Inter-Bank Traffic: 2. Data Alignment:
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Layout Override Table
Tracks which arrays are 
currently transposed

Tensor Transpose Unit
Transposes array elements 
to and from bit-serial format

Ro
ut

er

LOT

TTU

Tags

Stream 
Engine

Tensor 
Controller

L1 $

Tensor 
ControllerStream 

Engine LO
T

Ta
gs

Core
L2 $

L3 Way !
SRAM 
Array

SRAM 
Array

SRAM 
Array

SRAM 
Array

SRAM 
Array

SRAM 
Array

SRAM 
Array

SRAM 
Array

Microarchitecture Extensions

More details in paper90
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Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

µArch-specific 
Optimizations

µArch Support

Hardware support for 
compute paradigms

Specialize binary to take 
advantage of µArch details 

Outline

Near-Memory

Static Dynamic

Unified Abstraction

Agnostically represents

1. In-core compute


2. In-memory compute

3. Near-memory compute
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Compiler

JIT CompilerµArch Extensions

Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory
Unified Abstraction

µArch-specific 
Optimizations

µArch ExtensionsAgnostically represents

1. In-core compute


2. In-memory compute

3. Near-memory compute

Hardware support for 
compute paradigms

Specialize binary to take 
advantage of µArch details 

Key Challenges

Near-Memory

Static Dynamic
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Plain C Code

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Outline

Near-Memory

Static Dynamic

Compiler JIT Compiler

µArch Extensions

Runtime
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Requirements

Plain C Code

Static Dynamic

• Data alignment & layout

• Portable binary

• Decide between in-core, in-/near-memory, and fusion

• Managing on-chip space 

• Tiling 

• Bit-serial transpose

Compiler JIT Compiler

µArch Extensions

Runtime

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Near-Memory
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Plain C Code

Static Dynamic

Compiler

JIT Compiler

µArch Extensions

Runtime

• Data alignment & layout

Dataflow 
Representation

• Portable binary

In-Core 
Only

Configs

Runtime

•Decide between in-core, 
in-/near-memory, and fusion


•Managing on-chip space

• Tiling

• Bit-serial transpose

Compute Paradigms

In-Core

In-Memory

Core

Memory

Memory

Memory

Near-Memory

The Infinity Stream Approach
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• 64 Cores (8x8)

• 18 ways (16 SRAM arrays/way)

• 8KB SRAM arrays (256x256)

L3 Total: 144MB

Simulation Methodology

Simulator

Hardware Configuration

gem5 with partial AVX-512 support
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Fused Execution Speedup
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Baseline

In-Core Near-Memory In-Memory Infinity Stream

• 64 Cores (8x8)

• 18 ways (16 SRAM arrays/way)

• 8KB SRAM arrays (256x256)

L3 Total: 144MB

1.9

4.0
5.1

6.52%

overhead

Area Energy Efficiency
• 5.6x over In-Core

• 2.4x over Near-Memory

• 1.6x over In-Memory 104



Case Study: PointNet++

Aggregate
Element-wise max()

Multi-layer Perceptron
Matrix computations

Gather
Irregular memory access

Ball Query
Complex control

Furthest Sample
Irregular memory access

0 1Normalized Time

In-Core

Near-Memory

In-Memory

Infinity Stream

(faster) (slower)

In-Core In-MemoryNear-Memory
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Infinity StreambcBroadcast 
Spatial Reuse

Global Lattice Space
Virtual Vector Lanes

mvMove
Virtual Vector Alignment

TTensor 
Vectorized Memory Access

SStream 
Memory Access Pattern
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1.9x

4.0x
5.1x

Fusion Speedup

6.52%

overhead

Area

Energy 
Efficiency

5.62x

In-Core

Core

Memory

! Complex Control Flow

" Von Neumann Bottleneck

In-Memory

Memory

! Massive Vector Processing

" Strict Alignment Req.

Near-Memory

Memory

! Complex Memory Patterns

" Low Compute Width

In-/Near-Memory Fusion
Sequential Parallel

Supports memory 
irregularity

Extremely high 
compute width Runtime Tiling

# Hints

JIT 
Compiler

Minimizes Network Traffic

uArch Extensions

Tensor  
Transpose 

Unit

Layout 
Override 

Table
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