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ABSTRACT
In-memory computing with large last-level caches is promising
to dramatically alleviate data movement bottlenecks and expose
massive bitline-level parallelization opportunities. However, key
challenges from its unique execution model remain unsolved: auto-
mated parallelization, transparently orchestrating data transposi-
tion/alignment/broadcast for bit-serial logic, and mixing in-/near-
memory computing. Most importantly, the solution should be pro-
grammer friendly and portable across platforms.

Our key innovation is an execution model and intermediate rep-
resentation (IR) that enables hybrid CPU-core, in-memory, and near-
memory processing. Our IR is the tensor dataflow graph (tDFG),
which is a unified representation of in-memory and near-memory
computation. The tDFG exposes tensor-data structure information
so that the hardware and runtime can automatically orchestrate
data management for bit-serial execution, including runtime data
layout transformations. To enable microarchitecture portability, we
use a two-phase, JIT-based compilation approach to dynamically
lower the tDFG to in-memory commands.

Our design, infinity stream, is evaluated on a cycle-accurate
simulator. Across data-processing workloads with fp32, it achieves
2.6× speedup and 75% traffic reduction over a state-of-the-art near-
memory computing technique, with 2.4× energy efficiency.
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1 INTRODUCTION
As multicore systems scale, growing data movement bottlenecks
incentivize a memory-centric paradigm over the traditional core-
centric paradigm. One realization of this is near-memory computing,
where specialized hardware is added near memory banks to decou-
ple computation from core pipelines and reduce communication
demand. An alternative is in-memory computing, which augments
memory arrays with the ability to perform simple computations at
massive parallelism.

While in-memory computing has been applied at different hier-
archy levels and technologies, the trend of incorporating extremely-
large L3 caches has made the proposition of in-SRAM computation
quite attractive. For example, the latest AMD EPYCs have >100MB
of L3, which would translate to multiple millions of bitwise pro-
cessing elements. As prior work has shown, bit-serial SRAM [32]
has a computation density that is significantly higher than possible
on SIMD vector units, and the energy benefits are substantial [17].

But there are still barriers to broad adoption. An ideal in-memory
system would be as programmer-transparent as possible, be com-
patible with existing core-centric and near-data execution without
adding much overhead, and also preserve program compatibility
with future microarchitectures. No existing in-memory system has
achieved all three due to the challenges of the unique paradigm:
• Transparent Orchestration: Bit-serial logic requires transpos-
ing large arrays, managing on-chip space, and enforcing bitline
alignment. A suitable data layout, tiling, and explicit reuse are
critical to reducing data traffic. Also, distributing computation to
bitlines requires massive vector parallelism. Ideally, this orches-
tration would be done without any programmer involvement.
• Fused In-/Near-Memory Computing: Sometimes it is better
to split the work between in-/near-memory computing. E.g.
an in-memory reduction to produce partial results, which are
reduced to the final value by near-memory computing; or a
phase with both irregular and regular data structures, where
only the latter is suitable for in-memory. This requires a unified
execution model and low-overhead hardware implementation.
• Program Portability: High-performance implementations re-
quire exploiting both low-level microarchitecture details and
software parameters, but fixing them would prevent portability
and compatibility.
Existing in-memory works have not fully addressed these, as

they are either somewhat domain specific (e.g. [9, 15, 16]) or put a
significant burden on programmers (e.g. [1, 17, 30]).

https://doi.org/10.1145/3582016.3582032
https://doi.org/10.1145/3582016.3582032


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, Tony Nowatzki

Way 17*
Way 16*
Way 15...

++ + +

++ + +

++ + +

++ + +

(a) In‐Core Computing

Offload Computation Near Mem.

(b) Near‐Mem Computing

Req./Resp. of A[i], B[i], C[i].

(c) In‐Mem Computing
❶ Configure L3 SRAM Arrays

Transposed A[i], B[i], C[i].

(d) One 8kB SRAM Array
Way 0

*Reserved

❷ Parallel Compute across SRAM Arrays

25
6 
W
or
dl
in
es

A[i].LSB

A[i].MSB
B[i].LSB

B[i].MSB
C[i].LSB

C[i].MSBRo
w
 D
ec
od

er

256 PEs (A op B)

...

...

256 Bitlines
❶ Offload A[i] ‐> C[i]

❶ Req./Resp. B[0:N)

❸ C[i] = A[i] + B[i] 

❶ Offload B[i] ‐> C[i] ❷ Resp. A[0:N)

❶ Offload C[i] = A[i] + B[i]

❷ Resp. B[0:N)

❷ Req./Resp. C[0:N)

C[i] += A[i] + B[i]
❶ Req./Resp. A[0:N)

Figure 1: Overview of In-Core/Near-Mem/In-Mem Computing Paradigms

One source of inspiration is prior work on transparent near-
memory called near-stream computing (NSC) [64], which augments
the ISAwith explicit abstractions formemory access patterns (called
streams) and associated computation. In NSC, streams are offloaded
to execute near-L3 when there is little locality in private caches.
However, streams do not convey enough information and semantics
for in-memory computing. They are inherently sequential, they
lack information about data size and reuse which are needed to
decide the best layout and tiling, and they also lack the necessary
information to guarantee bitline alignment between data structures.

To solve this problem, our insight is that the portions of work-
loads that can benefit from in-memory computation have very
simple parallelism and reuse patterns that can be analyzed per-
fectly: generally affine access to multidimensional tensors. This
information is sufficient to determine an optimized data layout
and tiling, as well as for generating array-level data-movement
commands to exploit reuse. Thus, our approach is to make parallel
tensor access and relative memory alignment to be first-class primi-
tives of program execution. The augmented program representation
is called a tensor dataflow graph (tDFG). To first order, each tensor
element is mapped to a bitline, and the dataflow instructions are
mapped to in-memory commands.

Further, the tDFG is a unified abstraction for near-data and in-
memory, as it defines the semantics when near-data streams have
dependencies on in-memory tensor operations, and vice versa. For
example, a load stream may broadcast the CNN weights to all
bitlines (stream to tensor), or a reduction stream can execute near L3
banks to collect partial results from each SRAM (tensor to stream).

Finally, to enable portable binaries, we adopt a two-phase com-
pilation approach. The tDFG serves as the compilers’ intermediate
representation (IR) and the program representation, and in-memory
commands for SRAMs are generated by dynamic compilation of
the tDFG. This enables the binary to be independent of microar-
chitecture, and for tensor programs to take advantage of runtime
constants (tensor size/shape). Any difficult analysis happens while
generating the optimized tDFG, thus lowering is fast.

Our overall approach is called infinity stream, which transpar-
ently and flexibly enables offloading to either in-/near-memory,
fusing these paradigms. We implement our framework using LLVM
and a custom dynamic compiler, and evaluate with gem5 [45]. For
data-parallel workloads with in-memory phases using fp32, using
a 64-core system with 128MB L3, infinity stream achieves 2.6×
speedup and 75% traffic reduction over near-memory only [64]
with 2.4× energy efficiency, and 5.1× (up to 8.9×) speedup over a

high-performance multicore. Specifically, our contributions are:
• Execution model for fused and general in-/near-memory com-
puting, with automated data-layout transformations.
• In-memory compiler from plain-C, with optimizations for par-
allelism and data movement, enabling a programmer-friendly
interface to efficient in-/near-memory execution.
• tDFG abstraction and ISA with `arch/runtime/JIT support for
enabling portable in-memory execution.
• Quantifying the benefits of in-memory vs near-memory for
bit-serial SRAM acceleration.

Paper Organization: §2 gives background on in-/near-memory
and overviews our approach, followed by the execution model and
tDFG IR in §3. §4 details the runtime and dynamic compilation, with
the `arch in §5 and limitations in §6. Methodology and evaluation
are in §7 and §8, and related work is in §9.

2 BACKGROUND AND OVERVIEW
Here we overview the three computing paradigms with a simple
vector addition example. This characterizes in-memory computing
and its challenges, which motivate this work.

2.1 Near-Memory Computing
Conventional systems adopt a core-centric view: all computation
is centralized in the core, with data fetched from the memory sub-
system. Fig 1(a) shows a tiled multi-core system. Each tile con-
tains a core with a private L1/L2 and a shared L3 cache bank,
and is connected by a mesh network-on-chip (NoC). To perform
C[i]=A[i]+B[i], the core issues multiple requests to fetch A[i]
and B[i], as well as writing back C[i]. Vectorization and multi-
threading can be used to exploit the massive data parallelism in
this example. One major overhead here is the unnecessary data
movement, as all three arrays A[], B[] and C[] have no reuse at all.
Techniques like prefetching and cache bypassing can only partially
help, as the data movement is inevitable and incurs a high energy
cost. Such overheads are only going to be more severe as the system
scales up and the data grows.
Near-Memory Computing: To fundamentally eliminate unneces-
sary data movement, near-memory computing moves computation
closer to the data, and has been applied in many contexts: e.g. near
on-chip SRAM [53, 64], within the NoC [28, 56], near memory
controller [3, 14, 44]. They also offload computation at different
granularities from coarse-grained kernel-level [5, 31, 33, 42, 68, 73]
to fine-grained short instruction sequences [3, 28, 56].
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Near-Stream Computing: For the near-memory computing base-
line, we use near-stream computing [64], which offloads long-term
memory accesses (i.e. streams) with computations near the L3 cache.
In Fig 1(b), the memory accesses are decoupled into three streams
A[i], B[i], C[i], and offloaded to the shared L3 banks where the
data resides. Stream A[i] and B[i] directly forward their data to
stream C[i]. Stream C[i] coordinates with the remote CPU core to
perform SIMD ops on a spare thread, and then writes directly to L3.
This significantly reduces the data traffic and control overheads.

2.2 Bit-Serial In-Cache Computing
Near-L3 approaches still read the data out from the L3 SRAM ar-
rays, hence are still bound by the L3 cache’s bandwidth. To fully
unlock the massive potential data parallelism, in-memory comput-
ing moves the computation inside SRAM arrays. For this work, we
assume the same compute SRAM technology as Neural Cache [15].

In Fig 1(c), SRAM arrays are configured to add A[i] and B[i] in
parallel and directly write back to C[i], with no sequential reads
and writes at all. Fig 1(d) demonstrates how in-memory computing
works in one 8kB SRAM array with 256 wordlines (row) and 256
bitlines (column). Specifically, it requires the data being transposed
and bit-serial logic for computation.
Transposed Data Layout: In Fig 1(d), array elements (4 bits each)
are transposed from a horizontal layout across columns to a vertical
layout on the same column. E.g. the least significant bit (LSB) of
A[0] is stored in the cell indexed by wordline 0 and bitline 0, and
the most significant bit (MSB) of A[0] by wordline 3 and bitline 0.
Bit-Serial Compute: In-memory computing leverages bit-serial
logic to compute the result. This requires operands to be aligned
in the same column. In the example in Fig 1(d), A[i], B[i], and
C[i] are all placed in the same bitline. To start the computation,
we activate the wordlines of A[i].LSB and B[i].LSB at the same
time, and the 256 PEs perform the bit operation on the sensed bit
(e.g. AND for carry, XOR for addition). The PEs have cells holding
intermediate results (e.g. carry of addition). The result bit is then
written back to C[i].LSB by activating wordline 8 with the write
signal. This process repeats to compute the result one bit at a time
(hence “bit-serial”). It takes𝑂 (𝑛) cycles to perform integer addition
and𝑂 (𝑛2) for integer multiplication, where 𝑛 is the data type width.
However, this is amortized by the massive parallelism it provides.
Max System Speedup: Assuming a 64-core system with 16-way
2MB L3 banks (total 128MB) and 16 256×256 SRAM arrays/way, the
peak throughput of int32 addition is:

𝑇 = 𝑁𝑏𝑎𝑛𝑘 × 𝑁𝑤𝑎𝑦 × 𝑁𝑎𝑟𝑟𝑎𝑦/𝑤𝑎𝑦 × 𝑁𝑏𝑖𝑡𝑙𝑖𝑛𝑒/𝐿𝑎𝑡𝑒𝑛𝑐𝑦1

= 64 × 16 × 16 × 256/32 = 131072 ops/cycle
(1)

Assuming each baseline core can issue one 512-bit vector op per
cycle (64 × 16 = 1024 ops/cycle), in-memory provides 128× peak
speedup. Fig 2 shows the speedup of two microbenchmarks with
various input sizes on the baseline (AVX-512 and 1 or 64 OpenMP
threads), near-L3, and in-L3 computing using bit-serial logic. We
assume data is cached in L3 and already transposed for in-memory
computing. in-L3 computing usually favors larger input sizes as
they amortize the overhead of bit-serial operation. Despite this,
1We adopt the integer addition from [17]. System params in §7. See In-/Near-Memory
Computing [18] for more details, and §9 for related works.
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Figure 2: Speedup of Different Paradigms (Fp32)

in-L3 achieves the best performance for vec_add across all input
sizes. With 4M elements, it achieves 21× over Near-L3, making it a
promising approach to exploit the available data parallelism.

2.3 Infinity Stream Approach Overview
We overview our approach by revisiting each of our driving require-
ments from the introduction.
Automated Orchestration: The data layout and movement or-
chestration – i.e. allocation, alignment, transposition, and tiling –
are critical to the performance and applicability of in-memory com-
puting. Thus, the system must automate this management and ease
integration with conventional code. The key challenge is expressing
sufficient information to the hardware and software runtime.

Our approach: We develop a program representation called the
tensor dataflow graph (tDFG). The tDFG operates over tensors with
explicit data-parallel semantics, and represents inter-data structure
alignment with the concept of a global lattice space. Reuse can be
determined precisely, and the tDFG can be annotated with hints
about optimal tiling patterns. The tDFG is embedded as an extension
to a traditional ISA, and gives the runtime sufficient information to
make good decisions.
Fused In-/Near-Memory Computing: As suggested by Fig 2,
in-memory struggles with small input sizes. Also, many code pat-
terns like irregular control and memory (e.g. A[B[i]]) are only
potentially suitable for near-memory. This motivates both a run-
time selection between in-/near-memory computing, and a fused
in-/near-memory paradigm.

Our approach: The tDFG can express both in-memory and near-
memory opportunities in a unified representation. This generalizes
the near-data approach from near-stream computing [64]. At run-
time, the system decides the offload target (in-/near-memory) based
on data size and access behavior. One key hardware feature is to
integrate the transposed data layout with the coherence protocol
to allow data communication between the two paradigms.
Portability: High-performance in-memory code requires exploit-
ing both low-level hardware details (e.g. # of bitlines/array, SRAM-
level instructions) and runtime values, e.g. array dimensions, com-
pute constants. Thus, it is difficult for a single low-level binary to
be compatible with all software parameters and future microarchi-
tectures without sacrificing performance.

Our approach: We take a just-in-time (JIT) approach, with the
tDFG playing a similar role to PTX virtual assembly for CUDA
GPUs. A JIT runtime is in charge of quickly lowering the tDFG
“virtual” ISA into in-memory computing commands and managing
the transposed data layout. This requires carefully splitting the job
between the compiler and the runtime to maintain compatibility
while keeping JIT overheads reasonable.
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Programmability: Ideally, the system should be easy to program,
without programmers writing multiple code versions, worrying
about data orchestration, and switching between paradigms. This
requires a unified compiler and ISA abstraction, as well as a flexible
runtime library and microarchitecture support.

Our approach: The tDFG is constructed purely by the compiler
using plain C code. The algorithm and program transformations
(e.g. inner vs. outer product) can of course affect the performance,
so we discuss programming implications in §3.5. Overall, infinity
stream requires only minimal programmer intervention.
Infinity StreamWorkflow Overview: Fig 3 summarizes the over-
all workflow: our static compiler first extracts an initial tDFG from
plain C code and optimizes it for compute reuse and less data traffic.
The optimal tDFG is scheduled for common SRAM sizes (we use
256 × 256 and 512 × 512). This generates a fat binary with multiple
tDFG configurations, which reduces the complexity of JIT compila-
tion. At runtime, when an infinity stream region is configured, the
runtime dynamically decides the transposed data layout with tiling
based on the data size and hardware parameters. The matched ver-
sion of tDFG is JIT lowered into bit-serial commands. The infinity
stream `arch transposes the data and executes the commands to
perform in-memory computing.

3 INFINITY STREAM ABSTRACTION
This section shows how the proposed abstraction captures the
unique properties of in-memory computing to enable helpful opti-
mizations while simplifying programming complexity.

3.1 Stream Dataflow Graph
We first extract the stream dataflow graph (sDFG) from the program,
which embeds memory access patterns as streams with associated
near-stream computations. We leverage the sDFG as the foundation
and later extend it to support in-memory computing.
Stream: The compiler decouples access patterns into streams. E.g.
Fig 4(a) contains three load streams A[i-1], A[i], A[i+1], and
one store stream B[i], with linear access patterns. Streams may
be extracted from outer loops if the access pattern is supported.
Irregular access patterns (e.g. A[B[i]] and p=p->next) are also
streams but are inefficient for pure in-memory computing.
Near-Stream Computation: Computation can also be associated
with streams. E.g. in Fig 4(b) the reduction is associated with stream
A[i]. Although the operation is applied to all elements, streams still
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Figure 5: tDFG Node Semantics

implicitly define the access order and preserve sequential semantics.
In hardware, each stream (and associated computation) can be
independently moved near the L3 if more locality there.
Stream Dataflow Graph: Streams and near-stream computations
form the stream DFG. Streams can have dependences: data from
the outer loop can be reused by the inner loop, e.g. in Fig 4(c) where
the value m is reused (N-k-1) times.

3.2 Tensor Dataflow Graph

Intuition: In-memory computing requires unrolling computation
across all bitlines. Inspired by this observation, if the domain of
the stream is a hyperrectangle (i.e. 𝑁 -dimensional rectangle) of
the data structure, we can fully unroll the stream into a tensor. We
can then reformulate the computation as a dataflow graph where
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the operands are tensors; we call this the tensor DFG (tDFG). Fig 4
shows three example tDFGs, and Fig 5 summarizes all types of tDFG
nodes. We now define the key concepts and semantics of the tDFG.
Global Lattice Space: A key feature of the tDFG is the ability to
reason about the relative location of different tensors in memory,
so that data can be aligned at the bitline level. To enable abstract
reasoning about relative locality, we introduce a global lattice space
to the tDFG. All tDFG tensors are positioned on an 𝑁 -dimension
global lattice space (its dimensionality is that of the data structure
with the highest dimension), shown as the dashed grid in Fig 5.
Each lattice cell can hold an arbitrary number of data elements. At
runtime, cells are mapped to physical locations, e.g. SRAM bitlines.
More importantly, the lattice space serves as a homogeneous coor-
dinate system to abstract away the complex underlying hardware
hierarchy, including bitlines, SRAM arrays, banks, NoC, etc. This
helps keep the tDFG abstraction portable across platforms.
Tensor: As in Fig 5, a tDFG tensor is a hyperrectangle set of data
in the lattice space, denoted by [𝑝0, 𝑞0) × ... × [𝑝𝑁−1, 𝑞𝑁−1) where
𝑝𝑖 and 𝑞𝑖 are the start and end coordinate in dimension 𝑖 . Each data
element of a tensor resides in its own lattice cell. An 𝑁 dimensional
array is by itself a tensor with 𝑝𝑖 = 0, 𝑞𝑖 = 𝑆𝑖 where 𝑆𝑖 is the array
size on dimension 𝑖 . Unlike streams, tensors do not imply a temporal
sequential order but are fully expanded in the lattice space.
Compute with Tensors: A compute node takes one or more input
tensors, applies the computation to a domain which is the intersect-
ing hyperrectangle (see Fig 5), and produces an output tensor. The
tDFG uses a static single-assignment form (SSA), i.e. nodes always
produce a new tensor without overwriting existing ones. There are
two key characteristics of tensor computation:
• Data Parallelism: Since tensors are fully unrolled, the tDFG
does not assume an elementwise order within one tensor com-
putation, exposing massive data parallelism.
• Data Alignment: Tensor computation requires operand ele-
ments from different tensors to be exactly aligned within the
same lattice cell. This captures the data alignment requirement
for in-memory computing.

Explicit Tensor Alignment:We introduce two types of node in
the tDFG to facilitate explicit tensor alignment, which is crucial to
optimize and compile data movement for in-memory computing:
• Move: A move node (mv) in Fig 5 shifts a tensor along a dimen-
sion by a certain distance. E.g. in Fig 4(a), tensor A[0,N-2) is
moved to the right by 1 to align with A[1,N-1).
• Broadcast: To capture reuse spatially, a broadcast node (bc) in
Fig 5 broadcasts a small reused tensor along the reuse dimension
to align with the larger tensor. In Fig 4(c) A[k,k+1)x[k+1,N) is
broadcast downwards to align with A[k+1,N)x[k+1,N).

Global Bounding Hyperrectangle: Due to the finite hardware
resources, not every lattice cell has a valid physical location. we
define the global bounding hyperrectangle as the minimal one that
contains all involved data structures. semantically, data elements
outside the bounding hyperrectangle have undefined values, so data
moved or broadcasted outside is discarded. For now, we implicitly
assume all data structures are aligned to the origin, but this can be
relaxed to placing the array anywhere in the lattice.
Optimizing tDFG:We leverage equality graphs (e-graphs) [47, 48]
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Figure 6: Example of Optimized tDFG
to search for an optimized tDFG. E-graphs are a representation of
all possible re-writes to a graph in a compact form, which leverages
equality relationships between different re-writes. To construct an
e-graph for our case, we start from the initial tDFG, then repeatedly
grow the e-graph by applying re-writes and maintaining equiva-
lence points between them. The final tDFG selection is based on
architecture-informed cost metrics (e.g. estimated latency of move
vs. compute node), and can be exhaustive or terminated early to
reduce compile time. Fig 6 shows the initial and optimized tDFG for
Fig 4(c). Besides the basic associative, commutative, and distributive
rules, two transformations are widely applicable (see the Appendix
for a full list of transformation rules):
• Tensor Expansion: We can merge two mvs with same dis-
tance and dimension but on slightly different patterns. In
Fig 6, A0:[0,M-2)x[0,N-2) and A3:[1,M-1)x[0,N-2) are
both shifted to the right by 1, and can be merged into one mv
on the expanded tensor [0,M-1)x[0,N-2).
• Reuse Common Comp.: We can also reuse common computa-
tions. In Fig 6, instead of multiplying by 𝐶0 four times, we can
reuse the result by shifting it to where it is needed in the lattice.

3.3 Hybrid In-/Near- Memory
tDFG is also general and flexible to support hybrid in/near memory
execution by embedding streams.
Embedding Streams in tDFG: Some streams/ops in the tDFG are
not unrolled into tensors, e.g. alias, non-hyperrectangle accesses,
etc. Keeping streams in the tDFG enables data to be read or written
in a strided affine pattern or an indirect pattern, providing a better
setup for tensor computation (e.g. a stream performs an indirect
access and lays out the data in a tensor format). We allow up to
three dimensions for affine access and dependent one-level indirect
access (see the access pattern in Fig 5). A stream node can produce:
• Normal Values: Load and reduce streams generate normal
values (non-tensor) consumed by the core or other streams.
E.g. the reduction in Fig 4(b) is split into two nodes: a tensor
compute node to perform partial in-memory reduction, and
a stream node to perform the final reduction, as in-memory
computing is inefficient for the final rounds.
• Tensor Values: Store streams produce a new tensor with the
bounding hyperrectangle of all touched lattice cells. Semanti-
cally, this can be as large as the entire accessed array, e.g. an
indirect stream updates a subset of the elements. However, in
implementation, this is just updating an existing tensor and does
not allocate a new one. In Fig 4(c), stream Bi is not unrolled due
to low parallelism, and stream m writes the division result into
a tensor m, which is later consumed by in-memory computing.
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Figure 7: Example of Compiled Infinity Stream Program

Supporting Irregularity: Hybrid in-/near-memory execution
enables infinity stream to handle some forms of irregularity, i.e.
streams in tDFG can have irregular access patterns (e.g. A[B[i]]).
For example, in kmeans, in-memory computes the closest centroid
for each point using tensor operations, while near-memory per-
forms the indirect update to recalculate centroids’ coordinates. For
future work, the tDFG can also be extended with control flow and
predication to handle control irregularity.

3.4 ISA Interface
Both the sDFG and tDFG for each relevant program region are
encoded in the binary, to enable a dynamic choice between near-
memory and in-memory respectively. Fig 7 shows the compiled
Fig 4(c) with both DFGs and data layout hints.
Infinity Stream Configuration: The inf_cfg instruction marks
the beginning of infinity stream regions, and passes in the runtime
parameters (e.g. constant values). This triggers the runtime library
to read in the configuration and configure the microarchitecture
(details in §4 and §5). As in prior work [64], near-stream computa-
tions are compiled into conventional functions in the native ISA. A
pointer to this function is stored in the sDFG.
Layout Hints for Tiling: We add layout hints into the configura-
tion to help the runtime quickly make good decisions about tiling:
e.g. which dimensions the array would be shifted along (favoring
tiling along those dimensions), as well as which arrays are used for
the same computation (and should be bitline-aligned). The compiler
generates the layout hints by analyzing the tDFG’s data movement
patterns. The runtime also requires the array sizes, which are passed
in using the inf_array API. Fig 7 demonstrates using inf_array
to declare a 2D array A[N][N], where the infinity stream config-
uration defines that array A is broadcast in both dimensions. The
runtime combines this information and picks a suitable data lay-
out to reduce the traffic (see §4.1). Currently, we manually insert
inf_array calls in the initialization phase.
tDFG Backend Compilation: To generate a tDFG configuration,
the backend compiler serializes the tDFG and allocates values to
wordlines (once for each SRAM array size in the fat binary). In this
work we use a straightforward approach of scheduling instructions
in topological order, and using a local register allocation scheme
[4]. Though there are few effective registers (e.g. 8 32-bit registers
in a 256-wordline SRAM array), no register spilling was observed
in the studied workloads. Fusing multiple physical SRAM arrays
into a larger virtual array with more registers is possible, but left
for future work.
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3.5 Programming Infinity Stream
Due to its special execution model, programmers face different
trade-offs when programming an in-memory system, with tiling
and dataflow being the two major design choices.
Tiling: Since in-L3 computing flattens the memory hierarchy, it
becomes unnecessary to tile for L1/L2 caches at the programming
interface. The runtime will handle the tiling across SRAM arrays
using microarchitecture support. E.g., Fig 8 shows the baseline 2-
level tiled code for matrix multiplication mm, while infinity stream’s
implementation has no tiling with only 3 loop levels.
Inner vs. Outer Product: Another critical design choice is the
dataflow. In-core computing usually favors inner product as it ac-
cumulates the result in the register (see Fig 8). However, as in Fig 2,
in-memory computing does not handle reduction well as the data
parallelism is halved after each round of reduction, and prefers
outer product to convert the reduction to element-wise operations.
In Fig 8, during each round of k, one column of A[] and one row of
B[] is broadcast to the entire C[], followed by multiplication and
accumulation. We evaluate both dataflow choices in §8.
Best Practice: Programmers should choose outer product or a
similar dataflow that exposes more parallelism for inner loops and
move reduction to outer loops. Also, there is no need to tile for
private caches as in-memory computing is performed at L3. As in
standard practice, programmers should still tile for L3 to provide a
suitable working set for in-memory computing.

4 RUNTIME SUPPORT
The tDFG is neutral to hardware details and input sizes to maintain
compatibility. Instead, a runtime library manages the transposed
data layout, lowers the tDFG into in-memory commands, and de-
cides between in-/near-memory computing, described as follows.

4.1 Transposed Data Layout
The transposed data layout is left to runtime as it requires infor-
mation that is usually unavailable at compile time, e.g. input sizes,
SRAM array sizes, NoC bandwidth, etc.
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A trivial data layout would treat the data structure as a 1D ar-
ray and map elements to contiguous bitlines. However, tensors
are often shifted/broadcast along higher dimensions. Therefore, to
reduce data traffic across SRAM arrays, the data layout within an
SRAM is modified through tiling. Here, a tile is defined by the data
dimensions mapped to one SRAM array. In Fig 9 we consider a
4-bit-wide SRAM array, where a 4x4 2D software array is split into
4 2x2 tiles, and mapped to SRAM arrays (some SRAMs belong to
ways reserved for conventional cache). We only transform the data
layout through tiling at the SRAM array level, as it captures most
of the traffic reduction benefits, and keeps the mapping between
physical address and bitlines simple. Applying further data-layout
tiling at a coarser level could further reduce data traffic.
Tiling Constraints: Assume an N-dimensional 𝑆0 × ... × 𝑆𝑁−1
array with 𝐿 elements per cache line, 𝐵 bitlines per SRAM array
and𝑊 SRAM arrays per L3 bank used for in-memory computing.
The tile size 𝑇0 × ... ×𝑇𝑁−1 must ensure that:

(1)
∏𝑁−1
𝑖=0 𝑇𝑖 = 𝐵: Each tile occupies all bitlines in one SRAM

array. This simplifies the logic for intra-tile data movement.
(2) 𝑇0 ×𝑊 mod 𝐿 = 0: For dimension 0 (continuous in address

space), tiled elements at each L3 bank (𝑇0 ×𝑊 ) aligns with
elements per cache line (𝐿). This ensures that each line is
mapped to only one L3 bank.

The runtime gets the array’s element size and shape from the
inf_array API, and searches for a valid tile size meeting the con-
straints. If none is found, the array is not transposed and in-memory
computing is disabled. Notice that the array size is not required to
align to tile size; boundary tiles with unused bitlines require special
handling (see §4.2 and §5). In addition, it checks that the array’s
innermost dimension aligns to the cache line (𝑆0 mod 𝐿 = 0). Along
with constraint 2, this guarantees a transposed cache line is not
split across L3 banks, and is still accessible by normal requests (with
longer latency to transpose back, see §5). This rarely fails for large
arrays, as they are often padded for cache line alignment.

When multiple arrays are used by the same computation, e.g.
the input and output array of 2D convolution, the runtime picks
one primary array (the output or the reduced array) and uses its
tile size for others. Using the same tile sizes eases the complexity
to align tensors at runtime.
Tiling Heuristics: The runtime picks one valid tile size using hints
in the configuration. Shifts favor a close-to-square tile size, as it
keeps most traffic within the same tile. For reduction, a larger tile
size on the reduced dimension allows more rounds of in-memory
reduction. Broadcast reads favors a smaller innermost tile size if it
can spread one row to more L3 banks to avoid the hotspot. When
tensors are used for multiple kinds of data movement, we prioritize
by the order of reduction, shift, and broadcast, as reduction is usu-
ally more expensive due to low compute intensity, while broadcast
is inexpensive, as it can reuse the read data. The runtime can pick
the best data layout for each program phase. Our heuristic is within
2% of an oracle configuration (see §8).

4.2 JIT Lowering tDFG
The runtime also lowers the tDFG into in-memory commands. In
Fig 9, an example mv node (right shift columns [0, 3) by 1) is lowered
through the following steps.

Algorithm 1: Decompose Tensor
Input: A 𝑁 -dim tensor𝐴 = [𝑝0, 𝑞0 ) × ... × [𝑝𝑁 −1, 𝑞𝑁 −1 ) where 𝑝𝑖 < 𝑞𝑖
Input: A list of tile size of each dim 𝑡𝑠 = [𝑡0, ..., 𝑡𝑁 −1 ]
Result: A list of decomposed tensors 𝑟𝑒𝑡 initialized as [ ]

1 if N > 0 then // Decompose dimension 0

2

//

0 𝑎 𝑝0 𝑏 𝑐 𝑞0 𝑑

. . . . . . . . .
head middle tail

3 𝑎 ← ⌊ 𝑝0
𝑡0
⌋ × 𝑡0 , 𝑏 ← ⌊ 𝑝0+𝑡0−1𝑡0

⌋ × 𝑡0 // Align 𝑝0 to tile boundary

4 𝑐 ← ⌊ 𝑞0
𝑡0
⌋ × 𝑡0 , 𝑑 ← ⌊ 𝑞0+𝑡0−1𝑡0

⌋ × 𝑡0 // Align 𝑞0 to tile boundary
5 // Recursively decompose remaining dimensions
6 𝑟𝑠 ← Decompose( [𝑝1, 𝑞1 ) × ... × [𝑝𝑁 −1, 𝑞𝑁 −1 ), [𝑡1, ..., 𝑡𝑁 −1 ] )
7 forall𝐴′ ← 𝑟𝑠 do // Construct final decomposed tensors
8 if b <= c then // 𝑎 ≤ 𝑝0 < 𝑏 ≤ 𝑐 ≤ 𝑞0 < 𝑑
9 if 𝑎 < 𝑝0 then
10 𝑟𝑒𝑡 += [𝑝0, 𝑏 ) × 𝐴′ // Head interval
11 if 𝑏 < 𝑐 then
12 𝑟𝑒𝑡 += [𝑏, 𝑐 ) × 𝐴′ // Possible middle interval
13 else
14 𝑟𝑒𝑡 += [𝑎, 𝑐 ) × 𝐴′ // 𝑝0 aligns with 𝑎
15 if 𝑐 < 𝑞0 then
16 𝑟𝑒𝑡 += [𝑐, 𝑞0 ) × 𝐴′ // Add possible tail interval
17 else // 𝑎 = 𝑐 ≤ 𝑝0 < 𝑞0 < 𝑏 = 𝑑

18 𝑟𝑒𝑡 += [𝑝0, 𝑞0 ) × 𝐴′ // Same tile, no decomposition
19 else // No more dimension to decompose
20 𝑟𝑒𝑡 += 𝐴

1. Tensor Decomposition: As tensors may not align to the tile
boundary (e.g. moving a subregion of the array), they are decom-
posed into smaller ones to separately handle those tiles at the bound-
ary. Alg 1 recursively decomposes an 𝑁 -D tensor along the tile
boundary at each dimension. For the start and end position 𝑝0, 𝑞0 of
dimension 0, it identifies their respective tile boundaries [𝑎, 𝑏), [𝑐, 𝑑)
such that 𝑝0 ∈ [𝑎, 𝑏), 𝑞0 ∈ [𝑐, 𝑑), {𝑎, 𝑏, 𝑐, 𝑑} mod 𝑡0 ≡ 0 (line 3-4).
Depending on the relative positions of 𝑝0 and 𝑞0, it decomposes the
1D tensor [𝑝0, 𝑞0) into one to three new ones: additional subtensors
for the head and/or tail if 𝑝0 and/or 𝑞0 do not align with the tile
boundary. For multiple dimensions, we take the cross product of all
decomposed tensors (line 8-18). When the tensor aligns with the
tile boundary in every dimension, no decomposition is needed.

For example in Fig 9, A[0,4)x[0,3) is decomposed into
two subtensors AL[0,4)x[0,2) made of full tile 0 and 2, and
AR[0,4)x[2,3) made of partial tile 1 and 3. Since dimension 0
is perfectly aligned, the original range [𝑝0 = 0, 𝑞0 = 4) is kept
(line 13). For dimension 1, the range [𝑝1 = 0, 𝑞1 = 3) means the tail
is not aligned (𝑡1 = 2 =⇒ 𝑞1 mod 𝑡1 . 0). Therefore dimension 1
is decomposed into [𝑝1 = 0, 2) and [2, 𝑞1 = 3). The cross product
between decomposed dimensions 0 and 1 yields two subtensors
[0, 4) × [0, 2) and [0, 4) × [2, 3).
2. Intra-/Inter-Tile Shifts: Alg 2 lowers a decomposed mv node
into intra-/inter-tile shift commands. Each shift command takes
five arguments: 1) a tensor 𝐴, 2) a shift dimension 𝑘 , 3) a shift mask
that selects the bitlines to shift, and 4,5) the inter-/intra-tile shift
distances that indicate the direction and number of tiles/bitlines
to shift (intra-tile shifts always have 0 inter-tile shift distance). De-
pending on whether the shift distance aligns with the tile boundary
(𝑑𝑖𝑛𝑡𝑟𝑎 == 0), we may generate an inter-array shift command and
optionally an extra intra-array shift command (line 5-12). Notice
that not all shift commands will necessarily generate traffic, as the
intersection of the shift mask and the tensor may be the empty set.
Such shift commands are filtered out later (ommitted in Alg 2).
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Algorithm 2: Compile mv to Shift Commands
Input: A 𝑁 -dim tensor𝐴 = [𝑝0, 𝑞0 ) × ... × [𝑝𝑁 −1, 𝑞𝑁 −1 ) where 𝑝𝑖 < 𝑞𝑖
Input: Tile size 𝑡𝑘 of move dimension 𝑘 and move distance 𝑑
Result: A list of shift commands 𝑟𝑒𝑡 initialized as [ ]

1 𝑑𝑖𝑛𝑡𝑒𝑟 ← ⌊ abs(𝑑 )𝑡𝑘
⌋ // Inter-tile shift distance

2 𝑑𝑖𝑛𝑡𝑟𝑎 ← abs(𝑑 ) mod 𝑡𝑘 // Intra-tile shift distance
3 𝑑𝑖𝑛𝑡𝑟𝑎 ← 𝑡𝑘 − 𝑑𝑖𝑛𝑡𝑟𝑎 // Complement of 𝑑𝑖𝑛𝑡𝑟𝑎
4 // Shift(tensor, dim, mask, inter_tile_dist, intra_tile_dist)

5 if 𝑑 > 0 then // Shift forward
6 𝑟𝑒𝑡 += Shift(𝐴,𝑘, [0, 𝑑𝑖𝑛𝑡𝑟𝑎 ), 𝑑𝑖𝑛𝑡𝑒𝑟 , 𝑑𝑖𝑛𝑡𝑟𝑎 )
7 if 𝑑𝑖𝑛𝑡𝑟𝑎 > 0 then
8 𝑟𝑒𝑡 += Shift(𝐴,𝑘, [𝑑𝑖𝑛𝑡𝑟𝑎, 𝑡𝐾 ), 𝑑𝑖𝑛𝑡𝑒𝑟 + 1, −𝑑𝑖𝑛𝑡𝑟𝑎 )
9 else if 𝑑 < 0 then // Shift backward
10 if 𝑑𝑖𝑛𝑡𝑟𝑎 > 0 then
11 𝑟𝑒𝑡 += Shift(𝐴,𝑘, [0, 𝑑𝑖𝑛𝑡𝑟𝑎 ), −(𝑑𝑖𝑛𝑡𝑒𝑟 + 1), 𝑑𝑖𝑛𝑡𝑟𝑎 )
12 𝑟𝑒𝑡 += Shift(𝐴,𝑘, [𝑑𝑖𝑛𝑡𝑟𝑎, 𝑡𝐾 ), −𝑑𝑖𝑛𝑡𝑒𝑟 , −𝑑𝑖𝑛𝑡𝑟𝑎 )

As an example, in Fig 9, shifting AL[0,4)x[0,2) to the right
by one requires one intra-tile shift to move the column 0 (CMD 0,
Alg 2 line 6), and one inter-tile shift to move the column 1 across
the tile boundary (CMD 1, Alg 2 line 8). Each command has the
bitline/tile pattern generated by intersecting the tensor with the
shift mask. These patterns are applied to bitlines/tiles, specified
using the start[:stride:count]+ format. E.g. CMD 1 has bitline
pattern 1:2:2 and tile pattern 0:2:2, therefore shifts bitline 1, 3
of tile 0, 2 (red arrow). These patterns are expanded into masks by
the hardware when executed (see §5). Activated wordlines are also
encoded, but are omitted in Fig 9 for simplicity. Shift commands also
have the bitline/tile distance to determine the destination bitline/tile.
Similarly, AR[0,4)x[2,3) is shifted to the right by one intra-tile
shift (CMD 2, Alg 2 line 6), but requires no inter-tile shift (skipped
Alg 2 line 8). The runtime ensures data is not shifted beyond the
array boundary by checking the tensor size and the shift distance.
3. Map to L3 Banks: Some commands, e.g. those for boundary
tiles, may be skipped by some banks. The runtime intersects the
commands’ tile pattern and the tiles mapped to each L3 bank. If the
intersection is empty, the command can be skipped at that L3 bank.
In Fig 9, since CMD 0 operates on tile 0 (mapped to L3 bank 0) and
tile 1 (mapped to L3 bank 1), it is mapped to both L3 banks.
Other tDFG Nodes: Element-wise compute nodes do not move the
data and can skip step 2, but still needs step 1 and 3 to handle the
boundary tiles and to be mapped to L3 banks. The compute com-
mands also encode the opcode and the wordlines of the operands
and result. Reduction nodes are lowered into a sequence of interleav-
ing compute and intra-tile shift commands to fully reduce each tile
on the reduced dimension. Broadcast nodes are handled similarly
to move nodes, with the broadcast destination encoded.
Synchronization: All commands are synchronous at L3 banks (i.e.
do not issue until the previous one finished) except inter-tile shifts,
which are considered finished when all data movement within
the L3 bank and the inter-bank packets are injected into the NoC
(but may before they arrive at the destination L3 bank). Therefore,
the runtime inserts a sync command between an inter-tile shift
command and the consuming command, which serves as a global
memory barrier, ensuring that data movements before the sync
command are visible to commands after the sync command. (i.e.
arrived at the destination bitline). A sequence of pure intra-tile shift
and compute commands require no synchronization.

Reducing JIT Overheads: Being on the critical path of offloading,
JIT lowering can incur significant overheads. Thus, we co-design
the software and hardware for JIT performance:
• Division of labor: The static compiler handles register alloca-
tion and scheduling (see §3.4), so the JIT compiler only needs to
map the scheduled tDFG according to the tiled data layout and
lower into bit-serial commands. This is possible by scheduling
for common SRAM array sizes (256x256 and 512x512), forming
a fat binary similar to CUDA. Note that our fat binary does not
expose any microarchitecture beyond the SRAM array sizes, and
we believe there will only be a small handful that are useful over
many generations of hardware.
• Memoization: We reuse JIT results when the same tDFG is
re-executed with the same parameters by adding a small hard-
ware cache (see §5) for intermediate reuses and software memo-
rization for longer-term reuses. This is particularly useful for
iterative algorithms (e.g. stencils).
• Array dimension specialization: While our JIT compiler can
handle higher dimensional arrays, we specialize for common
1-3D arrays by leveraging C++ templates. This enables the com-
piler to unroll the loop and eliminate expensive recursion (e.g.
Alg 1 recursively decomposes the tensor according to the tile
boundary).
With these optimizations, we reduced JIT lowering time by more

than 1000×, and it takes 12% of overall runtime (see §8). We believe
additional optimizations could further reduce the overhead, e.g.:
• Phase overlapping: We can overlap JIT compiling with the
data preparing phase (to fetch and transpose data, see §5), or
lowering for future regions as the core is waiting for the current
region to finish.
• Hardware implementation: We can broadcast commands
after step 2 to all L3 banks and let the hardware skip those
not applied to its local tiles, eliminating step 3 (the most time-
consuming one as it is 𝑂 (𝑁𝑏𝑎𝑛𝑘 × 𝑁𝑐𝑚𝑑 )) in software.

4.3 In-/Near-Memory Decision
The runtime also decides between in-/near-memory computing by
evaluating the following condition:

𝑁𝑒𝑙𝑒𝑚 × 𝑁𝑜𝑝
𝑇𝑃𝑐𝑜𝑟𝑒

> Σ𝑖𝐿𝑎𝑡𝑜𝑝𝑖 + 𝑁𝑛𝑜𝑑𝑒 × 𝐿𝑎𝑡 𝐽 𝐼𝑇 (2)

The LHS models the latency of a core at peak throughput, and
the RHS captures the in-memory computing delay (first term, no
𝑁𝑒𝑙𝑒𝑚 , as computation is fully parallelized) and the JIT time (second
term). The compiler generates aggregate information as hints in
the configuration, e.g. # of each op, so that the runtime can make a
quick decision without analyzing the tDFG. Other platform-specific
parameters can be obtained by querying the hardware or profiling
offline. This is just a basic and conservative heuristic (assuming
peak core performance), but is sufficient for the studied workloads.

5 MICROARCHITECTURE EXTENSIONS
Fig 10 overviews infinity stream’s microarchitecture, with stream
engines (SEcore/SEL3) handling offloaded near-memory streams,
layout override tables (LOT) recording transposed data layout, and
tensor controllers (TCcore/TCL3) executing in-memory commands
and synchronizing with the core.
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Figure 10: Infinity Stream Microarchitecture

5.1 Near-Memory Computing
We adopt near-memory computing `arch support from NSC [64] to
execute streams at the L3 stream engine (SEL3). Streams read/write
data directly from L3 banks and forward operands to consuming
streams without going back to the core for computing. Streams
automatically migrate to the L3 bank where the next data is mapped,
with coarse-grained flow control messages (i.e. sync every N cache
lines between SEcore and SEL3) to reduce coordination.

5.2 In-Memory Computing
During in-memory computing mode, the microarchitecture needs
to manage the transposed data layout (LOT and TCcore), execute
the in-memory commands (TCL3), and synchronize with the core
(TCcore and TCL3). We assume the SRAM arrays are enhanced to
support bit-serial logic and shifts, as well as a buffered H tree to
enable efficient broadcast, similar to [15, 17].
Transposed Data Layout: The layout override table (LOT, Table 1)
tracks the transposed arrays initialized by the runtime (up to 3D, so
higher-dim arrays should have some dimensions fused). It tracks the
physical address, as the L2 and L3 caches are indexed by physical
addresses. This requires the array to be contiguous in physical
address space (with huge pages or special malloc functions). Directly
mapping virtual addresses to bitlines is possible by extending the
page table and TLB for transposed pages, but is beyond this work.
Map Physical Address⇔ Bitlines: The LOT essentially overrides
how physical addresses are mapped to SRAM arrays. For transposed
data structures, the physical address is subtracted by base and
divided by size to get the element index, which is used to find
the containing tile and coordinates within that tile. Since tiles are
mapped contiguously to SRAM arrays, it is straightforward to locate
the actual bitline and wordlines. Reverse mapping from bitlines to
physical addresses is similar.
Prepare Transposed Data: Before in-memory computing, TCcore
prepares the data in transposed format by first issuing flush requests
to the L3 cache controller to reserve the cache ways used for in-
memory computing (we use 16 ways).

The trans field in LOT (initialized to 0) indicates whether the
data is currently cached in transposed layout. If trans=0, TCcore
offloads a load stream to fetch the data into transposed format,
and sets trans=2 when finished. During this process, TCcore sets
trans=1, and any core requests to that physical range is blocked.
These load streams are executed in SEL3 to avoid the traffic over-
heads between L2 and L3. Our design uses a tensor transpose unit

Table 1: Layout Override Table (LOT)

Field Bits Description Field Bits Description

base 48 Base phys. addr. end 48 End phys. addr.
size 8 Element size. dim 2 Array dim (max 3).
Si 32 Array size (3×). Ti 32 Tile size (3×).
wl 10 Start wordline. trans 2 Transpose state.

(TTU) to convert between transposed and normal format, similar
to prior works [15, 17].
Execute Commands: After the data is prepared, TCcore sends out
commands in a small command cache (2kB) to TCL3 at mapped
L3 banks. Commands are generated by the runtime (see §4.2) or
reused if the same region is executed multiple times. TCL3 is a
microcontroller to convert the command’s bitline and tile pattern
to masks for its local tiles and broadcast commands to SRAM arrays.
For inter-tile shifts, it generates the control signals to configure
the H tree to shift or broadcast the data, and packs the bits into
NoC packets if the destination tile is mapped to another L3 bank.
For compute commands, it first broadcasts constant operands (if
any) to bitlines, and configures the SRAM arrays to perform the bit-
serial computation (using algorithms from prior work [17]). Since
commands are long latency (𝑛2+5𝑛 for n-bit integer multiply), TCL3
can preprocess the next command to hide the processing latency.
Synchronization: For sync commands, TCL3 reports to the other
TCL3 the # of packets sent there since the last sync, and the total sent
packets to TCcore. Therefore, the receiving TCL3 knows how many
packets to expect and can report back to TCcore when all packets
arrived. After hearing back from all TCL3s, TCcore checks that # of
sent/received packets matches before broadcasting a message to
clear the barrier.
Delayed Release of Transposed Data: To release the transposed
data, TCcore offloads a special store stream to evict data to the mem-
ory, which releases the reserved cache ways. To capture the reuse
across program regions, e.g. iterative algorithms, TCcore delays
releasing the data until any of the following conditions:
• Following an in-memory phase, the number of normal requests
to the transposed data exceeds a threshold (we use 100k), sug-
gesting that it is now used for in-core/near-mem computing.
• The L3 miss rate exceeds a threshold, suggesting releasing the
reserved ways to reduce the pressure on the L3.
• A timer expires (we use 100k cycles).

5.3 Fused In-/Near-Memory Computing
One key advantage of infinity stream is to enable normal core/stream
accesses to the transposed data, which allows cores/streams to be
unaware of the data layout, providing flexibility across paradigms.
Coherence: Tiling constraints in §4.1 guarantees that transposed
cache lines are still mapped to a single (but maybe different) L3 bank.
Therefore, the coherence state can be tracked in the newly mapped
L3 bank, enabling accesses to transposed data structures using
normal requests when in-memory computing is not used. Before in-
memory computing starts, TCcore evicts any dirty copies in private
caches to ensure the data in L3 is up-to-date. During in-memory
computing, cores are disabled from accessing the data structure by
blocking the requests from private caches (setting trans in LOT
to 1). However, streams at SEL3 can still read and write transposed
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Table 2: System and `arch Parameters (cy.: cycle)
System 2.0GHz, 8x8 Cores

OOO8 CPU 64 IQ, 72 LQ, 56 SQ+SB
(8-issue) 348 Int/FP RF, 224 ROB

Func. Units 8 Int ALU/SIMD (1 cy.)
4 Int Mult/Div (3/12 cy.)
4 FP ALU/SIMD (4 cy.)
4 FP Div (12 cy.)

L1 D/I TLB 64-entry, 8-way
L2/SEL3 TLB 2k/1k-entry, 16-way, 8 cy.

L1 I/D $ 32KB, 8-way, 2 cy.
Priv. L2 $ 256KB, 16-way, 16 cy.

Replacement Bimodal RRIP, 𝑝 = 0.03
L1 Bingo Pf. 8kB PHT, 2kB region
L2 Stride Pf. 16 streams, 16 pf./stream

NoC 32B 1 cy. link, 8x8 Mesh
5-stage router, multicast
X-Y routing, 16 mem. ctrls

Shared 20 cycles, MESI
L3 $ Static NUCA, 1kB interleave

256x256 SRAM array (8kB)
5-level H tree, 64B total BW.
16 arrays per way, 18 ways
64 banks, total 144MB

DRAM 3200MHz DDR4 25.6 GB/s

SEcore 2kB FIFO, 12 streams

SEL3 768 streams, 64kB buf.
4 cy. compute init. lat.

LOT 16 regions

Table 3: Workloads (BC: Broadcast)
Benchmark Move Cmp. Parameters

stencil1d Shift Elem 4M-entry, 10-iter
stencil2d Shift Elem 2k×2k, 10-iter
stencil3d Shift Elem 512×512×16\

10-iter
dwt2d Shift Elem 2k×2k

gauss_elim BC Elem 2k×2k
conv2d Shift Elem 2k×2k
conv3d BC Elem H/W=256,K=\

3×3, I/O=64
mm/in BC Reduce M/N/K=2k
mm/out BC Elem Same

kmeans/in BC Reduce 32k-point,dim=128\
kmeans/out BC Elem 128-center

gather_mlp/in BC Reduce M=32k,\
gather_mlp/out BC Elem N/K=128

Table 4: PointNet++
Krnl. 𝐾 , 𝑁 , 𝑟 , [𝑑𝑖𝑚𝑠 ]
SA1 512, 32, 0.2, [64, 64, 128]
SA2 128, 64, 0.4, [128, 128, 256]
SA3 1, 128, Inf , [256, 512, 1024]
SA4 512, 16, 0.1, [32, 32, 64]
SA5 512, 32, 0.2, [64, 64, 128]
SA6 512, 128, 0.4, [64, 96, 128]
SA7 128, 16, 0.2, [64, 64, 128]
SA8 128, 32, 0.4, [128, 128, 256]
SA9 128, 128, 0.8, [128, 128, 256]
FCx3 1, 1, /, [512, 256, 10]

SSG SA1→ SA2→ SA3→ FCx3

MSG [SA4, SA5, SA6]→
[SA7, SA8, SA9]→
SA3→ FCx3

data, as the dependence between stream and tensor operations is
guaranteed through the dataflow graph and synchronization. E.g.
the final reduce stream is not offloaded until the partial in-memory
reduce is synchronized at TCcore. Similarly, if a tensor is generated
by a store stream, the dependent in-memory computation will not
start until that stream completes.
Context Switch:As in [64], context switches in near-memory com-
puting are delayed until all streams reach a synchronization point
(every few cache lines). Similarly, during in-memory computing,
context switches are delayed until TCcore completes a sync com-
mand so that all computation and data movement is committed. The
progress of streams (including iteration number) and in-memory
computing progress (commands), as well as the LOT, are saved as
part of architectural state. The OS may flush transposed data so
that LLC space can be reclaimed.

6 IMPLEMENTATION LIMITATIONS
Our implementation of infinity stream has some limitations that
can be relaxed in future works: 1. While it is possible to share the L3
to enable in-memory computing in a multi-program scenario, we
allow only one thread to reserve the L3 for in-memory computing
at a time by locking the LOT. 2. We assume the input data is already
tiled to fit in the L3. Otherwise, in-memory computing is disabled.
A future work could support automatically tiling at runtime. 3.
We currently do not support register spilling because all studied
kernels can fit in the available registers. Register spilling can be
implemented by a streamwriting back and loading from the DRAM.

7 METHODOLOGY

Compiler and Runtime: We extend the open sourced LLVM-
based near-stream computing compiler [64] to unroll sDFGs into
tDFGs as described in §3. For tDFG optimization, we define the
tDFG rewrite rules in the egg library [67] to explore the e-graph (see
Appendix for details). Optimized tDFGs are serialized back to the
x86 backend in LLVM (extended with infinity stream instructions).
The compiler inserts calls to a C++ runtime library to JIT compile
tDFGs and manage the data layout.
Simulator: We use gem5-20 [45] for execution-driven, cycle-level
simulation, extended with partial AVX-512 support. The L3 cache
is extended to model the transposed data layout and in-memory
bit-serial computation.
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Figure 11: Overall Speedup

Parameters and Configurations: Table 2 lists system parameters.
In total, it has 4M bitlines and provides massive parallelism for
in-memory computing. The Base OOO cores use advanced L1 and
L2 prefetchers [6]. For near-memory computing, Near-L3 offloads
streams and the associated computation to SEL3. For infinity stream,
we evaluate three configurations:
• In-L3 invokes a runtime JIT library to manage the data layout
and lower tDFG into bit-serial commands to compute with L3
SRAMs, but no near-memory computing support.
• Inf-S adds near-memory computing to In-L3 by offloading
sDFG to the SEL3.
• Inf-Sno JIT assumes that input and hardware parameters are
known, so tDFG is precompiled (no runtime lowering).

Benchmarks:We evaluate 13 dense fp32 OpenMP workloads, com-
piled with -O3 and vectorized by AVX-512 for Base and Near-L3.
For infinity stream, a single-thread scalar version is sufficient, as
streams are spatially unrolled to all bitlines. Table 2 summarizes
the input data sizes and the major data movement (tensor shift
vs. tensor broadcast) and computation patterns (element-wise vs.
reduction) for each benchmark.

Some benchmarks have different implementations, e.g. inner
product vs. outer product for mm. We pick the best implementa-
tion for each configuration when comparing the performance and
energy efficiency, and provide a detailed sensitivity study of the
preferences of different paradigms in §8.

We also perform an end-to-end study on PointNet++ [55], a
popular hierarchical neural network for point cloud classification
and segmentation, in §8.

8 EVALUATION

Overall Performance: Fig 11 shows the overall speedup overBase,
and Fig 12 shows the NoC utilization and traffic breakdown. The
NoC traffic is categorized as the traffic of the coherence control
messages (control), the traffic of moving data around (data), and
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Figure 14: Inf-S Cycle Breakdown

the traffic of all the control messages to manage the offloaded
computation, e.g. flow control for streams and synchronization
for in-memory computing. For benchmarks with multiple dataflow
designs (mm, kmeans, gather_mlp), we pick the best implementation
for each configuration (see below for a detailed comparison between
dataflow choices). Overall,Near-L3 achieves 2.0× speedup and 29%
traffic reduction by offloading streams near L3 banks, but may hurt
the performance as it is unable to capture the reuse; e.g. for kmeans
Near-L3 introduces 2.6× extra NoC traffic.

By leveraging massive parallelism in bitlines, In-L3 achieves
2.1× speedup over Near-L3. However, without near-memory com-
puting support, In-L3 failed to realize the full potential of near-data
computing, e.g. in kmeans, both aggregation and centroid recom-
putation are executed by the core and not offloaded. On the other
hand, by enabling hybrid in-/near- memory computing, Inf-S yields
another 24% speedup over In-L3 (2.6× overNear-L3), and 90% NoC
Traffic reduction over Base. To understand the benefit of traffic
reduction, Fig 13 shows the detailed traffic breakdown for Inf-S,
adding the intra-/inter-tile shift traffic. Notice that some inter-tile
shift traffic goes through the NoC if the destination tile is not
mapped to the same L3 bank, and is shown separately from NoC-
Data as NoC-Inter-Tile. By choosing a reasonable tile size, Inf-S
converts most of the data movement into intra-tile shifts, leveraging
the massive parallelism to shift bitlines within each SRAM array.
Cycle Breakdown: Fig 14 breaks down the cycles of Inf-S into
transferring and transposing data from/toDRAM (DRAM), lowering
tDFG to commands (JIT Lower), moving tensors (Move), bit-serial
in-memory computing (Compute), final reduction of the in-memory
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partial results (Final Reduce), hybrid in-/near-memory computing
(Mix), as well as pure near-memory computing (Near-Mem). Overall,
in-memory computing takes 88% of total cycles, with 26%, 32%,
and 19% spent on DRAM transfer, computing, and tensor moving
respectively. 4.9% of cycles are spent waiting for the final reduction
from near-memory streams, e.g. mm_inner. Transposing is cheap
when there is high reuse, e.g. gauss_elim and mm. Dots in Fig 14
indicates the percentage of ops offloaded to bitlines – nearly all
computation (99%) are performed in-memory.
JIT Overheads: As shown in Fig 14, JIT lowering contributes 11%
of the total runtime, and can be more than 50% when we cannot
reuse the lowered commands (51% for gauss_elim), or when a
high-dimensional tensor is not aligned to the tile size and requires
more commands to handle boundary tiles (50% for stencil3d). If
all input sizes and hardware parameters are known at compile time,
the compiler could precompile the tDFG into commands without
invoking the JIT runtime. Inf-Sno JIT in Fig 11 represents such
a configuration and yields another 19% speedup over Inf-S. The
average JIT time is 220us (𝜎 449us), with gauss_elim as the out-
lier (1616us) as the tensor is shrinking every time. We believe by
overlapping JIT lowering with DRAM fetching and command exe-
cution, as well as applying more advanced software optimizations,
the overheads would be further reduced.
Dataflow Choices: Fig 15 shows the speedup of inner and outer
product versions of mm, kmeans, and gather_mlp on different
paradigms, normalized to a tiled inner product version for Base.
As expected, Base favors the inner product implementation, as it
could accumulate the result in the register file. Near-L3 generally
suffers as it cannot explore the data reuse when offloaded to L3,
and favors the outer product version, as the dataflow allows the
stream engine to partially recognize the broadcast pattern and save
some data traffic (similar to [63]). For Inf-S, the outer product is a
clear win, as it exposes the maximal data parallelism in the inner
loops, and avoids the inefficient in-memory reduction. Overall, it
achieves 4.4× speedup over Base. Therefore we implement tiled
inner product for Base and outer product for Near-L3 and Inf-S.
Data Layout: Fig 16 shows the cycle breakdown of all 2D bench-
marks with various tiling sizes, annotated with the best and default
tile size chosen by the runtime. Similarly, Fig 17 shows the speedup



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, Tony Nowatzki

256
128 64 32 16 8 4 2 1

X Tile Size

1
2
4
8

16
32
64

128
256

Y 
Ti

le
 S

ize

1.01.71.81.41.3
1.01.71.91.51.3

1.01.71.81.51.6
1.01.71.81.61.3

1.01.71.71.21.2
1.01.61.21.3

1.01.01.1
0.81.1

0.7
Z = 256 / X / Y

stencil3d

256
128 64 32 16 8 4 2 1

X Tile Size

1.01.11.72.31.91.51.1
1.01.11.82.52.11.61.1

1.01.21.92.62.11.61.0
1.01.22.02.72.01.4

1.01.22.02.51.7
1.11.21.82.1

1.01.11.6
1.01.0

0.9
Z = 256 / X / Y

conv3d
Figure 17: Inf-S Speedup vs. 3D Tile Size (Default as Bold)

stencil1d
stencil2d

stencil3d dwt2d
gauss_elimconv2d

conv3d mm
kmeans

gather_mlp
geomean.

2−1
20
21
22
23
24

En
er

gy
 E

ff.

Base Near-L3 In-L3 Inf-S Inf-Sno JIT

Figure 18: Overall Energy Efficiency

vs. 3D tiling sizes. For benchmarks with shift data movement, e.g.
stencils and dwt2d, picking a balanced tile size (16 × 16 for 2D
arrays) usually yields close to optimal performance. When tensors
are broadcast, e.g. gauss_elim and mm, having a smaller innermost
tile size helps avoid the hotspot of reading the source row from
a single L3 bank. When reduction is needed, a larger tile size at
the reduced dimension increases the computation density for in-
memory computing and improves the performance. For example,
for kmeans/in and gather_mlp/in, since the size of the reduced
dimension is 128, tiling by 128 allows pure in-memory reduction
to produce the final results in each SRAM array (hence no Final
Reduce bar). Overall, our heuristic achieves within 2% of an ora-
cle, and yields 34% speedup over no tiling (laying the innermost
dimension continuously) across all 2D/3D benchmarks.
Energy andArea: The energy breakdown for the SRAM arrays and
H tree were obtained from CACTI [7] (22nm) where compute only
involves the SRAM arrays while tDFG mv node uses both. Fig 18
shows the energy efficiency over Base. Inf-S yields better energy
efficiency for workloads with less reuse by converting NoC traffic
into intra-tile shifts. Overall, In-L3 and Inf-S achieve 1.5× and
2.4× energy efficiency over Near-L3 respectively.

Most of the area overhead comes enhancing existing SRAM
caches for compute: additional sense amps and write drivers so
every bitline can compute, an extra decoder to read two wordlines
simultaneously, and the compute logic. Our area model consists
of the overall CPU area reported by McPAT [37] (22nm), the in-
memory compute overhead from Neural Cache’s [15] die analysis 2,
and near-memory support logic [64]. After adding additional logic
for in-memory compute (66.75mm2) and near-memory support
(28.16mm2), the whole chip area overhead is 6.52%.
Case Study of PointNet++: To better understand the benefit of
infinity stream on real applications, we perform an end-to-end study
on PointNet++ [55], a widely applied hierarchical neural network

2We determine the subcircuit area with COFFE [70].
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Figure 19: Timeline of PointNet++ SSG/MSG Classifier

for point cloud applications. The basic component of PointNet++ is
set abstraction (SA), which consists of the following stages:
• Furthest Sample: Iteratively picks 𝐾 centroids (points) from
the input point cloud. For iteration 𝑘 + 1, the new centroid is
the furthest point from the 𝑘 prior centroids, with the first one
randomly selected.
• Ball Query: Searches for 𝑁 neighbor points within radius 𝑟
of each centroid. If less than 𝑁 neighbors are found, the first
neighbor is duplicated to fill the remaining spots.
• Gather: Performs an indirect gather to collect neighbors’ feature
vectors. Generates a matrix of (𝐾 × 𝑁 ) × 𝐷𝑖𝑛 where 𝐷𝑖𝑛 is the
dimension of the input feature vector.
• MLP: Feeds the gathered matrix into a 3-layer MLP. All layers
use ReLU as the activation function. The output matrix is (𝐾 ×
𝑁 ) × 𝐷𝑜𝑢𝑡 where 𝐷𝑜𝑢𝑡 is the dimension of the last MLP layer.
• Aggregate: Reduces the neighbors’ feature vectors by taking
the max value of each dimension. Outputs a matrix of 𝐾 ×𝐷𝑜𝑢𝑡 .
To perform point cloud classification or segmentation, the au-

thors proposed two network architectures:
• Single Scale Grouping (SSG):Multiple SAs are chained with
previous output centroids being sampled and grouped by the
next SA. This is usually followed by a few fully-connected (FC)
layers to produce the final scores for classification.
• Multiple Scale Grouping (MSG): To better adapt to various
sampling densities, multiple SAs with different radii are applied
simultaneously to the input, with their output feature vectors
concatenated as the final output. Similar to SSG, this can be
chained and followed by more SA/FC layers.
We evaluate both SSG and MSG for classification inference. Ta-

ble 4 lists the detailed parameters of all SAs and the network struc-
ture of SSG/MSG, taken from [55]. The input point cloud contains
4k randomly generated points, normalized to [0, 1).

Fig 19(a) shows the normalized timeline of PointNet++ SSG,
broken into different stages with the texture indicating where the
computation is executed (in-core, near-L3 cache, or in-L3 SRAM).
For SSG, the MLP layers are relatively small with high reuse in the
private cache, and with AVX-512 and OpenMP, it only takes 48%
of the total runtime in Base. This also limits the potential for in-
memory computing, e.g. for the first MLP layer in SA1, the amount
of data parallelism can only fill 1/4 of the available bitlines, falling
short to amortize the long compute latency of bit-serial operation.
Therefore, In-L3 only yields a 10% speedup over Base.

On the other hand, furthest sampling takes 46% of the total run-
time. This is because it is an iterative algorithm without sufficient
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work in each iteration to amortize the synchronization overhead of
OpenMP. Also, the working set cannot fit in the private L1 cache,
yielding a high miss rate and hurting the performance. These char-
acteristics make it a good candidate for near-memory computing,
which achieves 3.1× speedup for sampling, and 31% performance
improvement for Near-L3 over Base.

Fig 19(b) shows a similar normalized timeline for PointNet++
MSG. In MSG, sampling is less of a bottleneck as the sampled
centroids are shared between SAs within the same MSG. Also, MSG
uses larger MLP layers, increasing the amount of data parallelism.
This makes in-memory computing more favorable, and In-L3 and
Near-L3 achieve 37% and 12% speedup over Base respectively.

Finally, by leveraging the fused compiler/ISA/runtime abstrac-
tion, Inf-S can flexibly execute the kernel in the core, near the L3
cache, or in the L3 SRAM. The runtime can avoid offloading small
MLP layers to in-memory computing as it hurts the performance,
e.g. SA3 and FC layers. Overall, it achieves the highest performance
(1.69× and 1.93× over Base for SSG and MSG respectively).

Key Takeaway: Inf-S fuses the benefits of in-/near-memory com-
puting, unlocking the full potential of near-data processing.

9 RELATEDWORK

In-memory Computing for CPU Caches: Prior works also
augment CPUs for computing in on-chip SRAM caches. Com-
pute cache [1] enables in-memory computation for CPU cache
SRAMs, but only supports the less general bit-parallel layout,
single-dimension bit-level vector ops (as opposed to multi-dim
tensor level). GenPIM adds NVM-based in-memory computing to a
general purpose core [30]. Inhale and Sealer enable in-memory en-
cryption at L1 [71, 72]. Neither of the above implements a high-level
compiler. Duality cache proposes a bit-serial in-memory approach
for CPUs codesigned for CUDA programming [17]. None of these
enables portable/transparent support for in-cache computing.
Improving Near-Data Programmability: Various near-data ap-
proaches have developed techniques to improve programmability.
PEI enables programming through instruction intrinsics [3]. Snac-
kNoC [56], Active Routing [28] and Dist-DA [8] specify computa-
tion offloads with dataflow graphs. Tesseract uses remote function
calls [2]. Livia uses single-cache-line accessing functions [44]. Our
work relies on stream abstractions, i.e. long-term memory access
patterns, which have been applied both in general purpose proces-
sors [49, 61–64] and accelerators architectures [11, 12, 21, 43, 65, 66].

Other near-data programming models are nearly transparent
to the programmer. Several are limited to thread-level near-data
decisions, programmed with CUDA or OpenMP [27, 46, 52, 59].
Other works enable transparent near-data at a finer grain, but have
other limitations, like OmniCompute [53] (only for short RMW
instruction chains), EMC [26] (only for address gen.), and Near-
stream computing [64]. These cannot be naively applied to enable
programmability for PIM, because they do not manage data trans-
position or guarantee bitline-level alignment.
In-Memory Foundations: Prior works have explored bit-parallel
in-memory computing, primarily for bulk bitwise ops [1, 39, 50,
57]. We adopt the bit-serial approach for this work, which enables
broader support for more operations, including floating point.

DRAM devices have been the target of both in-memory [19,
20, 24, 38, 54, 57, 69] and near-memory processing [34, 36, 51].
In-DRAM computing provides more parallelism, while in-SRAM
computing limits modifications to the CPU.We choose SRAM as the
first step due to the trend towards large LLCs and the fact that many
algorithms are already tiled for the LLC. However, infinity stream
can be applied to both cases, as the abstraction (tDFG) is neutral to
the hardware, and the JIT runtime can be extended for in-DRAM
computing (e.g. triple-row activation). The memory controller also
needs to be extended to support streams. Similar to DMA, coherence
could be maintained by evicting cache lines from SRAM.

This work relies heavily on prior efforts to develop the paradigm
and circuits of in-SRAM computing devices, including for bit-serial
integer [32] and floating point ops [17, 29, 60]. Our contribution is
about architecture support for these existing technologies.

Recentworks have also proposed offloading tomultiple hierarchy
levels, leveraging properties like data density (SISA [9]), cache
presence (Livia [44]), or offline analysis (MLILP [16]). None of them
enable portable targeting of in-memory computing from a general
purpose language.
Domain-Specialization: A variety of prior in-memory acceler-
ators are domain-specialized. Many focus on ML [10, 15, 23, 38,
40, 58], while others target graph processing, mining, and physics
simulation [2, 9, 13, 25]. Many broader workloads are prime candi-
dates for in-memory computation with infinity stream. For example,
several key data center workloads have been adapted to bitvector
parallelism. BitWeaving’s [41] database column scan produces a
comparison bitmask by organizing data to facilitate bit-serial digital
comparison. BitFunnel [22] filters documents with a bloom filter, in-
dependently computed by determining the hash indices in memory
and constructing the bitvector near memory.

10 CONCLUSION
Infinity stream is a new approach that makes in-memory com-
puting programmer-friendly: We proposed an execution model
that fuses in-/near-memory, using an IR called the tensor dataflow
graph (tDFG) to capture parallelism, reuse, and layout optimiza-
tions; we built an optimizing compiler and JIT-approach to enable
long-term portability without sacrificing performance, with a mi-
croarchitecture that transparently orchestrates data management
and performs data-layout transforms at runtime. Our optimizations
provide integer-factor improvement for data processing for only
a modest area overhead. More broadly, we believe that rethinking
how to compute throughout the memory hierarchy will be critical
for enabling extreme system scaling.
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A tDFG OPTIMIZATION
Here we discuss the rewrite rules and equality-graph approach to
optimizing the tDFG.
Intuition: A unique aspect of optimizing the tDFG is the need



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, Tony Nowatzki

to reason about the tensor domains (i.e. the hyperrectangle in lat-
tice space). For example, two same element-wise computations on
tensor A[1, n) and A[0, n-1) can be merged into a single com-
putation on A[0, n), provided that the tensor size information is
correctly tracked after we slightly expanded the computed tensor.
This cuts the computation by half. More generally, there is a large
transformation space with many equivalent tDFGs producing the
same result, and the compiler needs to efficiently search for the
optimal tDFG with less data traffic and computation. We first intro-
duce the tDFG equivalence rules used to rewrite the tDFG, followed
by an optimized example and details in our implementation.
tDFG Equivalence Rules: We define two tDFG nodes to be equiv-
alent if they represent the same result and share the same domain
in the lattice space. To transform the tDFG, we now formalize the
tDFG equivalence rules, with these notations:
• T,C,M,B: Tensor, compute, move, and broadcast node respec-
tively, with their definition and semantics in Fig 5 (page 4). Note
that all these nodes produce a tensor, while T constructs the
input tensor from the input array.
• 𝐴, 𝐵,𝐶 : Arbitrary tensors in the tDFG, e.g. compute, move, broad-
cast node.
• 𝑖, 𝑗 : Operated dimension, e.g. move, broadcast.
• 𝑝𝑖 , 𝑞𝑖 : Range of the 𝑖𝑡ℎ dimension [𝑝𝑖 , 𝑞𝑖 ).
• 𝑓 : Computation applied to input tensors.
As a simple example, Eq. 3a defines the associative rule for

compute node, when the operation 𝑓 is associative by itself, i.e.
𝑓 (𝑓 (𝑎, 𝑏), 𝑐) ⇔ 𝑓 (𝑎, 𝑓 (𝑏, 𝑐)). Similarly, Eq. 3b defines the commu-
tative rule for compute node when the operation 𝑓 is commutative,
e.g. addition, multiplication. We can also define the distributive rule
similar to 𝑎 × (𝑥 + 𝑦) ⇔ 𝑎 × 𝑥 + 𝑏 × 𝑦 (Eq. 3c).

C(𝑓 ,C(𝑓 , 𝐴, 𝐵),𝐶) ⇔ C(𝑓 , 𝐴,C(𝑓 , 𝐵,𝐶)) (3a)
C(𝑓 , 𝐴, 𝐵) ⇔ C(𝑓 , 𝐵,𝐴) (3b)

C(𝑓 ,C(𝑔,𝐴),C(𝑔, 𝐵)) ⇔ C(𝑔,C(𝑓 , 𝐴, 𝐵)) (3c)

Exchanging Compute and Move/Broadcast: Eq. 4a defines the
commutative rule to exchange a unary compute node and a move
node. Recall that a move node shifts the tensor along a certain
dimension by some distance in the lattice space. Therefore, the
move operation can happen before or after the computation, i.e. it
is commutative with compute nodes. Similarly, when the compute
node takes multiple operands, a move node is applied to every input
tensor. Also, Eq. 4b shows the commutative rule for a compute node
and a broadcast node.

C(𝑓 ,M(𝐴, 𝑖, 𝑑𝑖𝑠𝑡)) ⇔M(C(𝑓 , 𝐴), 𝑖, 𝑑𝑖𝑠𝑡) (4a)
C(𝑓 ,B(𝐴, 𝑖, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡)) ⇔ B(C(𝑓 , 𝐴), 𝑖, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡) (4b)

Expanding and Shrinking Tensor: To reuse common computa-
tion results, it may be necessary to expand a tensor. For example,
C(𝑓 ,T(1, 𝑁 )) and C(𝑓 ,T(0, 𝑁 )) share common results on the do-
main [1, 𝑁 ). However, they are not equivalent as the first compu-
tation is applied to a slightly smaller tensor. If we can expand the
first tensor to T(0, 𝑁 ), we can reduce the operations from 2𝑁 − 1
to 𝑁 .

To maintain equivalence, an expanded tensor must be later
shrunk to the original domain. Therefore, we introduce a shrink
node, S, which resizes the tensor along dimension 𝑖 to have a new
domain [𝑝𝑖 , 𝑞𝑖 ).

Putting these together, Eq. 5 shows the rule to expand a smaller
tensor of size [𝑝𝑖 , 𝑞𝑖 ) in the 𝑖𝑡ℎ dimension into a larger tensor of size
[𝑝′
𝑖
, 𝑞′
𝑖
), where 𝑝′

𝑖
<= 𝑝𝑖 and 𝑞′𝑖 >= 𝑞𝑖 . The shrink node returns the

output tensor to the original domain, hence it is equivalent to the
original tensor. Shrink nodes are only for tracking the tensor size
information, and are lowered to a nop by the JIT compiler (similar
to how the 𝜙 nodes are not lowered to instructions in SSA IR [35]).
We omit shrink nodes in the paper for simplicity, as they are only
needed during optimization.

T(..., 𝑝𝑖 , 𝑞𝑖 , ...) ⇔ S(𝑖, 𝑝𝑖 , 𝑞𝑖 ,T(..., 𝑝′𝑖 , 𝑞
′
𝑖 , ...))

where 𝑝′𝑖 <= 𝑝𝑖 , 𝑞
′
𝑖 >= 𝑞𝑖

(5)

Exchanging Shrink and Other Nodes: A shrink node by itself is
not sufficient to unlock the optimization opportunities in the tDFG.
We need to define how it interacts with other tDFG nodes. Eq. 6a is a
straightforward rule that two shrink nodes on different dimensions
are commutable. When they operate on the same dimension, we can
combine them into a single shrink node by taking the intersection,
as in Eq. 6b.

S(𝑖, 𝑝𝑖 , 𝑞𝑖 , S( 𝑗, 𝑝 𝑗 , 𝑞 𝑗 , 𝐴)) ⇔ S( 𝑗, 𝑝 𝑗 , 𝑞 𝑗 , S(𝑖, 𝑝𝑖 , 𝑞𝑖 , 𝐴))
when 𝑖 ≠ 𝑗 (6a)

S(𝑖, 𝑝𝑖 , 𝑞𝑖 , S(𝑖, 𝑝′𝑖 , 𝑞
′
𝑖 , 𝐴)) ⇔ S(𝑖,max(𝑝𝑖 , 𝑝′𝑖 ),min(𝑞𝑖 , 𝑞′𝑖 ), 𝐴) (6b)

Similarly, shrink node and move node on different dimensions
are commutable (Eq. 7a). If they are on the same dimension, we
can also apply a shrink node on the moved tensor with the shifted
domain [𝑝𝑖 + 𝑑𝑖𝑠𝑡, 𝑞𝑖 + 𝑑𝑖𝑠𝑡).

M(S(𝑖, 𝑝𝑖 , 𝑞𝑖 , 𝐴), 𝑗, 𝑑𝑖𝑠𝑡) ⇔ S(𝑖, 𝑝𝑖 , 𝑞𝑖 ,M(𝐴, 𝑗, 𝑑𝑖𝑠𝑡))
when 𝑖 ≠ 𝑗 (7a)

M(S(𝑖, 𝑝𝑖 , 𝑞𝑖 , 𝐴), 𝑖, 𝑑𝑖𝑠𝑡) ⇔ S(𝑖, 𝑝𝑖 + 𝑑𝑖𝑠𝑡, 𝑞𝑖 + 𝑑𝑖𝑠𝑡,M(𝐴, 𝑖, 𝑑𝑖𝑠𝑡))
(7b)

This also applies to broadcast node and shrink node: they are
commutable if on different dimension (Eq. 8a). When they are on
the same dimension, we can combine them by directly broadcasting
to the shrunken region.

B(S(𝑖, 𝑝𝑖 , 𝑞𝑖 , 𝐴), 𝑗, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡) ⇔ S(𝑖, 𝑝𝑖 , 𝑞𝑖 ,B(𝐴, 𝑗, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡))
when 𝑖 ≠ 𝑗 (8a)

S(𝑖, 𝑝𝑖 , 𝑞𝑖 ,B(𝐴, 𝑖, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡)) ⇔ B(𝐴, 𝑖, 𝑝𝑖 , 𝑞𝑖 − 𝑝𝑖 ) (8b)
Finally, a shrink node is also commutable with the compute node

(Eq. 9).

S(𝑖, 𝑝𝑖 , 𝑞𝑖 ,C(𝑓 , 𝐴)) ⇔ C(𝑓 , S(𝑖, 𝑝𝑖 , 𝑞𝑖 , 𝐴)) (9)

Optimization Example: Fig 20 shows an example of applying our
rewrite rules to discover opportunities for reuse. The original tDFG
first moves the input tensor A left and right by one before applying
a constant element-wise multiply to both tensors. Since in-memory



Infinity Stream: Portable and Programmer-Friendly In-/Near-Memory Fusion ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

A0 A1

+

dim=0
dist=1 mv mv

dim=0
dist=-1

A0 A1

+

dim=0
dist=1 mv mv

dim=0
dist=-1

mvmv

A0 A1

+

dim=0
dist=1

dim=0
dist=-1mvmv

A0 A1

+

dim=0
dist=1

dim=0
dist=-1

mvmv

A

+

dim=0
dist=1

dim=0
dist=-1

VV

s s

mvmv

A

+

dim=0
dist=1

dim=0
dist=-1

V

s s

mvmv

+

dim=0
dist=1

dim=0
dist=-1

s s

A

mvmv

+

dim=0
dist=1

dim=0
dist=-1

s s

A

VV

VVVVVV

VVVV

Apply Eq. 4a Apply Eq. 5 Apply Eq. 9

Figure 20: Example of Applying Rewrites

processing applies element-wise functions to all elements, we can
save a redundant compute by first performing the computation on
the entirety of tensor A before realigning the result.

We begin with the original tDFG. By rule 4a, we can commute
the move and compute nodes.

C(+,C(×𝑉 ,M(T(0, 𝑛 − 2), 0, 1)),
C(×𝑉 ,M(T(2, 𝑛), 0,−1)))

Eq. 4𝑎
−−−−−→ C(+,M(C(×𝑉 ,T(0, 𝑛 − 2)), 0, 1),

M(C(×𝑉 ,T(2, 𝑛)), 0,−1))
We can expand the two tensor Ts to the entire domain of array A

with rule 5. By commuting the shrink S nodes and computeC nodes
with rule 9, we can discover a common subexpression, indicating
there is an opportunity for compute reuse.

Eq. 5
−−−−→ C(+,M(C(×𝑉 , S(0, 0, 𝑛 − 2,T(0, 𝑛))), 0, 1),

M(C(×𝑉 , S(0, 2, 𝑛,T(0, 𝑛))), 0,−1))
Eq. 9
−−−−→ C(+,M(S(0, 0, 𝑛 − 2,C(×𝑉 ,T(0, 𝑛))), 0, 1),

M(S(0, 2, 𝑛,C(×𝑉 ,T(0, 𝑛))), 0,−1))

Fig 6 (page 5) shows a more complicated example of optimized
tDFG. To see how the equivalence rules rewrite the program, first
expand all the tensors to the full array, and exchange the shift nodes
to the final output of the tDFG (ommitted in Fig 6). Use Eq. 3b and
Eq. 3a to add v0 and v2 together. Since we are multiplying by a
constant𝐶0 and𝐶1, we can use distributive rule to swap the addition
and multiplication. The optimized tDFG reuses the computated
results and avoids unnecessary data movements.
Equality Graphs:We leverage equality graphs (e-graphs) to effi-
ciently search the optimal tDFG in the design space. Equality graphs
represent all possible rewrites of an expression tree. Given a rewrite
rule 𝑒1 → 𝑒2 for two expressions 𝑒1, 𝑒2, an e-graph will apply it to
all matches in its underlying expression tree. These nondestructive
updates are performed by marking 𝑒1 and 𝑒2 as equivalent. Given a
set of rewrite rules, all possible permutations of the original expres-
sion tree are discovered by continuously applying them. The final
tDFG selection is based on architecture-informed cost metrics com-
bining the estimated latency of move vs. compute node, the amount
of moved/broadcast data, as well as the number of computations.
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