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Abstract—Data movement and communication have become
the primary bottlenecks in large multicore systems. The
near-data computing paradigm provides a solution: move
computation to where the data resides on-chip. Two chal-
lenges keep near-data computing from the mainstream: lack
of programmer transparency and applicability. Programmer
transparency requires providing sequential memory semantics
with distributed computation, which requires burdensome coor-
dination. Broad applicability requires support for combinations
of address patterns (e.g. affine, indirect, multi-operand) and
computation types (loads, stores, reductions, atomics).

We find that streams – coarse grain memory access patterns
– are a powerful ISA abstraction for near data offloading.
Tracking data access at stream-granularity heavily reduces
the burden of coordination for providing sequential semantics.
Decomposing the problem using streams means that arbitrary
combinations of address and computation patterns can be
combined for broad generality.

With this insight, we develop a paradigm called near-stream
computing, comprising a compiler, CPU ISA extension, and
a microarchitecture that facilitate programmer transparent
computation offloading to shared caches. We evaluate our
system on OpenMP kernels that stress broad addressing and
compute behavior, and find that 46% of dynamic instructions
can be offloaded to remote banks, reducing the network traffic
by 76%. Overall it achieves 2.13× speedup over a state-of-
the-art near-data computing technique, with a 1.90× energy
efficiency gain.

Keywords-Stream-Based ISAs; Programmer-Transparent Ac-
celeration; Near-Data Computing;

I. INTRODUCTION

As systems scale, the overheads of data movement and
communication become the primary bottlenecks for high
performance energy-efficient execution, especially for data-
processing workloads that rely on large datasets. A variety
of specialized architectures mitigate these overheads by
carefully scheduling computation near data and orchestrating
data-movement in efficient pipelines. This broad paradigm
of near-data processing (NDP) includes near-memory tech-
niques [10,19,21,22,25,26,29,31,49,50,66,71,73], as well as
near-cache [1,2,20,23,36,44,57]; the latter is our focus.

Bringing NDP to general purpose computing is challenging
because of three competing goals: transparency to the
programmer, generality of computations offloadable, and
autonomy of offloaded computations to keep overheads low.

Transparency can be provided trivially by performing
near-data computation at thread-level [30,56,66]. However,
efficient thread-level NDP is limited to workloads that only
process a single data-structure, as different data-structures
generally have different access patterns and would benefit

from a tailored offloading approach. Generality can be
provided by instead using finer-grain, sub-thread abstractions
for offloading decisions, like offloading special instruction
sequences [5,49,57] or short program regions [32,44,61].

While attractive, sub-thread offloading poses significant
challenges to all three goals. In terms of generality, NDP
techniques should support offloading near many types of
data structure (arrays, lists, trees, etc.) and flexibly employ
various computation strategies (near-data filtering, stores,
atomics, reductions, etc.). However, prior works only support
a subset [5,32,44,49,57,61].

To provide transparency, sub-thread offloading requires
maintaining sequential memory semantics with distributed
address generation and computation. To this end, prior
instruction-based offloading techniques integrate remote
memory access with the coherence protocol [5,57]; however,
because offloaded computations are instruction-granularity –
and thus not autonomous – they require expensive fine-grain
coordination. Another approach is to rely on the programmer
to provide guarantees on access patterns [32,44,61], but the
corresponding APIs generally require expert knowledge.

In this work, our goal is to provide effective and general
near-cache computing capability for general purpose cores
without programmer help. Our primary insight is that using
streams – i.e. coarse grain memory access patterns – as the
granularity and abstraction for offloading helps to enable
general, autonomous, and transparent offloading:
• Generality: Streams capture long-term per-data-structure

behavior, so optimizations can be more aggressive than
with instruction-level offloading. (e.g. stream abstractions
enable a reduction operation to be fully offloaded, so that
only the final value needs to be returned).

• Autonomy: Streams enable efficient autonomous offload-
ing by eliminating coordination overhead (e.g. copying
array a[] to b[] only requires two requests from the core,
rather than one request per cache line).

• Transparency: Streams reduce the overhead of maintain-
ing sequential memory semantics by enabling detection
of memory ordering violations using per-data-structure
access summaries rather than individual accesses.

Approach: Based on these insights, we develop a paradigm
that we call near-stream computing. Here, programs express
each coarse grain memory access pattern with stream
configuration instructions. When appropriate, instructions
are grouped with streams by the compiler, and they execute
together either in the core or in cache. Offloaded computation



is specified with control/memory-free instruction blocks
of the original ISA, and is either executed with a small
scalar unit within the cache or on the remote core using a
lightweight thread context.

To maintain sequential program semantics and preserve
coherence, we developed a synchronization protocol that com-
municates the conservative address range over computation
intervals. The coherence protocol and memory-dependence
disambiguation hardware are updated to leverage stream-
granularity information for conservative operation.

The stream-pattern determines the strategy for offloading
and aspects of the synchronization protocol. In our taxonomy,
a stream-pattern consists of an address pattern (affine, indirect,
pointer-chasing, or multi-operand) and a computation type
(filter-load, remote store, read-modify-write, or reduction).

Finally, there are a class of optimizations which are difficult
to apply in a fully-programmer transparent way, specifically
where the original memory ordering may not be preserved.
Our work explores novel compiler transformations which
can provide further opportunity with limited programmer
intervention (simple pragmas), and we evaluate the potential
of full versus near-full programmer transparency.

Overall, our contributions are:
• Exploration of a novel program abstraction and granular-

ity – streams – for performing near-data computing.
• Range-based synchronization and memory disambigua-

tion protocol for maintaining sequential semantics with
distributed computation at low overhead.

• Novel compiler techniques that perform aggressive near-
data optimizations with simple pragmas.

• Evaluation of near-stream computing against multiple
prior near-data approaches [44,57,68].

Implementation and Results: Our implementation1 in-
cludes a CPU ISA extension (x86), a set of LLVM-based
compiler transforms and backend, and a microarchitecture.
To study the potential of near-stream computing, we choose
data-processing kernels from GAP graph suite and Rodinia,
representing irregular and regular workloads respectively.

Our evaluation first found that significant traffic reduction
was possible; on average 76%, and up to 98%. Performance
gains were even higher due to reduced latency, including an
average of 2.13×, 2.48× over designs inspired by Livia [44]
and Omni-Compute [57] respectively.

Paper Organization: We first make a case for near-stream
computing in §II, and also overview our optimizations and
compare against prior near-data works. Then we discuss the
ISA and the basic in-core operation in §III. We describe our
offloading approach and range-based synchronization in §IV,
while §V discusses programmer-exposed synchronization-
free optimizations. We cover methodology and evaluation in
§VI and §VII, followed by additional related work in §VIII.

1Open source at: https://github.com/PolyArch/gem-forge-framework/
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Figure 1: Potential of Sub-Thread Near-Data (View in Color)

II. MOTIVATION AND OVERVIEW

We first discuss a taxonomy of near-data patterns and the
opportunity they provide. Then, we overview our approach,
and compare to other sub-thread near-data techniques.

A. Taxonomy and Opportunity

Taxonomy: For sub-thread near-data, there are two dimen-
sions of generality: address patterns and computation types.

Address patterns intuitively include affine (e.g. A[i,j]),
indirect (e.g. B[A[i,j]+w]), and pointer-chasing
(e.g. P=P.next). The latter two are data-dependent and
non-contiguous, so imply distributed access. We also include
multi-operand access patterns, for when a computation
operates on multiple data sources (e.g. A[i] op B[i]). This
requires further coordination of distributed access, as A[i]
and B[i] may not be mapped to the same location.

When such an address pattern is decoupled from the
remainder of the program, we refer to it as a stream.

Compute Patterns define the relationship between near-
memory and in-core work. Four common patterns are:
• Near-Load-Stream: Computation may be performed

near a dependent load stream to reduce the data traffic,
either by reducing bitwidth or filtering data.

• Near-Store-Stream: Computations may be performed
near a store stream to avoid returning outputs to the core.

• RMW: Read-modify-write ops update each data item in
place, and greatly reduce the latency and network traffic.

• Reduction: Like near-load-stream but with accumulation.
No intermediate data is communicated to the core.

Near-Stream Opportunity: To understand the potential of
near-stream computing, we study how prevalent different
compute and address types are across data-parallel workloads
(see §VI/§III-B for workload/compiler details). Figure 1(a)
shows the breakdown of dynamic micro ops committed that
can be associated with streams, where 21% are associated
with load-streams (including reduction) and 31% with store
and RMW.

https://github.com/PolyArch/gem-forge-framework/


Next, we demonstrate that the ideal near-data scheme
heavily reduces data traffic with respect to even ideal private
caches. Figure 1(b) shows the pure data traffic (bytes ×
NoC hops) of three abstract systems. No-Priv$ : baseline
system with no private caches, Perf-Priv$ : system with
perfect private cache (fully-associative, byte-granularity, LRU,
256kB, zero-cost update-based protocol), and Perf-Near-LLC
where computation is offloaded to LLC banks. All systems
have 64-cores, a mesh NoC, and 1MB/bank LLC. We find that
adding private caches only reduces 27% of data traffic, due
to the large reuse distance. However, near-LLC computing
reduces the data traffic by 64%.

B. Optimization Overview

The basic principle of stream-based near-data computing is
that a decoupled stream may be offloaded near an LLC bank,
along with some computation. The coordination and flow of
data varies depending on the aspects of the taxonomy. We
begin assuming a simple affine access pattern, and discuss
how different compute types would work. Then we generalize
to more complex access patterns.

Reduce: Figure 2(a) shows the case of affine reduction
(ΣA[i]). Conventional systems fetch all the data to the core
to accumulate the result (multiple request/response arrows),
introducing unnecessary traffic. By coupling the reduction
with the stream A[i], the remote LLC can perform the
computation in place. As the stream iterates, it automatically
migrates to the next LLC bank with the new data and keeps
reducing. Nearly all data traffic is eliminated.

Store: Store streams, like memset (i.e. A[i]=0), introduce
significant overhead, as they require getting write permission
and writing back. With near-stream computing, this can be
performed in place as the stream migrates.

Load: It may also be beneficial to couple computation with
a load stream and respond with the computation result,
especially when the computation reduces the data type size.
For example, extracting a hash key of a few bits from a larger
value. Also, if a computation’s result is used by multiple
stores, associating it with the load stream instead would avoid
redundant compute.

RMW: RMW streams (e.g. A[i]+=C) are a hybrid case of
both load and store computation. Semantically, they guarantee
atomicity of the update.

Access Pattern: Multi-op: Operating on multiple data
streams complicates near-data computing, as it requires
coordination within the memory system. Figure 2(b) shows
the case of vector addition, i.e. C[i]=A[i]+B[i]. Our
approach is to allow the load streams to compute the location
of the store stream, so their data can be forwarded there
directly. Here, the computation is performed at the store
stream, and is updated in place with minimal data traffic and
no writeback traffic at all.
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Stream Configure

Near Stream Computing
Stream Migrate
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Figure 2: Near-Stream Computing Optimizations

Access Pattern: Indirection: Computations can also be
associated with indirect streams. Figure 2(c) shows an indirect
RMW on B[A[i]]. Instead of fetching A[i], computing
the indirect address, and finally bringing in and updating
B[A[i]], we can associate the atomic operation with the
indirect stream B[A[i]], and generate indirect atomic
requests in remote cache banks. This not only reduces the
data traffic, but also shortens the long dependence chain and
lowers the latency.

Access Pattern: Pointer-Chasing: Figure 2(d) shows an
example of searching in a linked list. This example uses a
reduction, and chases the pointer among LLC banks. Similar
to indirect patterns, this removes the core from the long
dependence chain and only the final matched result is sent



Active Livia Omni- Snack PIM- Near
Rtng [32] [44] Comp. [57] -NoC [61] En. [5] -Stream

Data Level HMC LLC/MC LLC LLC Mem LLC
Prog. Transparent No No Yes No No Yes
Loop Autonomous Yes Yes No No No Yes
# Patterns (Tab II) 3/16 8/16 9/16 8/16 6/16 16/16
# Workloads 2/14 5/14 10/14 5/14 6/14 14/14

HMC: Hybrid Memory Cube, LLC: Last Level cache, MC: Memory Controller

Table I: Capabilities of Sub-thread Near-data Approaches

to the core.
Unlike affine streams, the bank for an indirect and pointer-

chasing access is data-dependent. Therefore, we do not allow
them to have arbitrary streams as operands. An example
ineligible stream would be C[B[i]]+=A[i], as it would
be burdensome for the A[i] stream to compute the bank
of C[B[i]]. Among the workloads we studied, we never
encounter this case. Patterns where a value-producing stream
is the base stream are supported, like C[A[i]]+=A[i];
A[i] is included in such an indirect request.

C. Related Sub-thread Near-data Techniques

While prior works have explored sub-thread-level abstrac-
tions for near-data offloading, none are both programmer-
transparent and support autonomous loops executing remotely.
Further, none of them are general enough for all combinations
of address and computation patterns. Table I summarizes
comparison, and Table II compares supported address and
compute patterns to prior works. We explain in detail below.

Active Routing [32] enables offloading of reductions to
a network of HMC memories. A programmer specifies a
dataflow graph with accesses at endpoints. As it only supports
reduction (except pointer-chasing), only 2/14 of workloads
are targetable.

Livia [44] offloads single-cache-line accessing functions to
the cache or memory controller. Functions may be chained,
so Livia can achieve loop autonomy (except for indirect
pattern). However, it requires programmers to use an API to
identify offload regions, and has no support for multi-operand
offload functions. Also, Livia can only modify the data and/or
send back a final value, therefore does not support the “load”
pattern.

SnackNoC [61] offloads computation dataflow graphs to
NoC routers. It requires programmer support through special
APIs, and does not support any form of indirect addressing.
It also offloads at iteration granularity only.

PIM-enabled [5] offloads programmer-designated instruc-
tions to memory; a locality monitor (cache-tag replica)
tracks line-level locality and determines whether to offload.
Offloading is done at instruction-level only, so offloaded
regions are not autonomous (high coordination overheads,
gray in Table II).

Omni-Compute [57] offloads RMW instruction chains to
LLC banks. Computation is performed in the middle (at the
“meet”) of remote banks. It has a good expressiveness (covers
10 workloads), but a finer granularity.

Address Pattern S Affine Indirect Ptr-chasing Multi-op.
A[i] A[B[...C[i]]] A = A.next A[i],B[i]

Load =f(*S) O S P N O P N N O S N

Store *S = f() L O S P N L O P N L N O S N

RMW *S = f(*S) L O S P N L O P N L N O S N

Reduce σ f(S) A L S N A N L N A S N

A: Active Routing, L: Livia, O:Omni, S: Snack-NoC, P: PIM-en, N: Near-stream
Underline indicates partial support through fine-grain offloading (high overhead).

Table II: Address and Compute Patterns of Near-Data Works

Evaluation Baselines: We compare quantitatively against
Livia, since it provides loop autonomy and more workloads
than Active Routing. We also evaluate Omni-Compute, be-
cause it is the only other programmer-transparent technique.

D. Relationship to Prior Stream-Based ISAs
The essential idea of encoding high-level memory access

patterns in the ISA to improve various microarchitectural
policies has been explored by many prior stream ISA
works [18,62,65,67,68], primarily in the context of prefetch-
ing. Table III compares their capabilities to generate various
access patterns. Note that Prodigy [65] uses a different
terminology of Data Indirection Graph (DIG) instead of
stream dependencies.

Addr. Pattern Near-Data Compute?

Stream-Specialized Processor [67] Affine, Indirect, Ptr. No
Stream-Semantic Register [62] Affine No
Unlimited Vector Extension [18] Affine, Indirect No
Prodigy [65] Affine, Indirect No
Stream Floating [68] Affine, Indirect, Ptr. Address Only
Near-Stream Computing (this work) Affine, Indirect, Ptr. Addr. + Comp.

Table III: Capabilities of Stream ISA Works

Unlike prior works focusing on address generation, near-
stream computing extends streams with a new dimension:
computation. With compiler and ISA support (see §III),
computations taking or generating stream data are extracted
from the original program and associated with streams. They
can be offloaded along with the stream to the bank (LLC in
this work) near the data.

Furthermore, this work develops a coarse-grained synchro-
nization scheme to coordinate the core and remote streams
and provide precise states and alias detection (see §IV).
When synchronization is not required (through explicit
pragmas), near-stream computing introduces new aggressive
optimizations (§V), e.g. embedding inner loop streams in
outer-loop streams and completely removing the inner loop,
which is not supported in SSP [67] or stream-floating [68].

III. NEAR-STREAM PRELIMINARIES

Here we discuss the preliminary components of a near-
stream system to enable in-core execution only (i.e. not
offloading near-data), including the ISA, compiler, and
microarchitecture. The approach is inspired by prior work
on decoupled stream architectures [67,68], and we note the
contrasts in this section. The subsequent section develops
the near-data approach.



while (i < N)
A[B[i]] = foo();
i++;

sb

sa

s_cfg(sb=B[i], sa=A[sb]);
while (i < N)

s_store(sa, foo());
s_step(i);

s_end(sa, sb);

(b) Indirect Store

Legend: Address Dependence sa,b: Stream id. for memory stream Memory Stream

Addr Only Stream ISA Pseudo Asm. Stream Dep. GraphOriginal Pseudo Code

Semantically,
indirect store

while (i < N)
if (cond)

v += A[i];
i++;

s_cfg(sa=A[i]);
while (i < N)

if (cond)
v += s_load(sa)

s_step(i);
s_end(sa);

sa
Semantically,
1 affine load

(a) Conditional Sum Config.

Config.

Figure 3: Address-Only Stream ISA Examples

A. Near-Stream Computing ISAs

Address-Only Stream ISA Concepts: The basic ISA ab-
stractions are adapted from decoupled-stream ISAs [67],
which focus on address generation and embed no near-data
computation. The essential idea is that high-level address
patterns can be configured as streams before entering a
loop or loop nest, and their data is accessed by special
stream load/store instructions. Take the conditional sum
example in Figure 3(a). The affine load pattern A[i] can
be recognized as an affine load stream and configured by a
s_cfg instruction before entering the loop.

Conceptually, a stream represents a sequence of addresses
and data, with a unique stream id (e.g. sa for A[i]), which
points to the current iteration. A s_load instruction replaces
the original load instruction and moves the current iteration’s
stream data to an architectural register to be consumed by core
instructions, and a s_step instruction explicitly advances
the stream, enabling conditional stream usage and decoupling
the address pattern from the control flow. Stream accesses are
ordered with other core accesses. Streams with known length
autonomously terminate and release all state, e.g. stream id.
Streams with data-dependent length are terminated explicitly
by a s_end instruction.

More generally, stores and atomics can also be represented
as streams. Similarly, a s_store or s_atomic would
replace the original access instruction. They have similar
semantics as the originals (write or read-modify-write), but
with stream generated addresses. Also, the address pattern of
a stream can take input from itself or another stream; these
dependences are represented within a stream dependence
graph, as shown in Figure 3. This enables pointer-chasing
and indirect streams, e.g. A[B[i]] in Figure 3(b).

Representing Near-Data Computations: Our key innova-
tion is to extend streams with rich and general NDP abstrac-
tions, enabling streams to have co-located computations,
or near-stream instructions. Besides the normal address
dependence, streams with computation may also have value
dependencies on other streams. Loop-invariant inputs are
provided at configuration time. Streams cannot accept loop-
variant core values, as it breaks the decoupling boundary.

Near-stream instructions are outlined into a separate
function, with the pointer in the stream configuration.

while (i < N)
C[i] = A[i]+B[i];
i++;

while (i < N)
s_store(sc);
s_step(i);

s_end(sa, sb, sc);

while (i < N)
v = (A[B[i]] += 1);
i++;
foo(v);

sb

sa

s_cfg(sb=B[i], sa=A[sb]+=1);
while (i < N)

v = s_atomic(sa);
s_step(i);
foo(v);

s_end(sa, sb);

(c) Indirect Atomic

Legend: Address Dependence Value Dependence Stream with N S Insts.
sv: Stream id. for reduction stream sa,b,c: Stream id. for memory stream

N S Computing Pseudo Assembly Stream Dep. GraphOriginal Pseudo Code

s_cfg(sc=C[i]=sa+sb=A[i]+B[i]);

sa sb

sc
Semantically, 2 loads,

1 add & 1 store

Semantically,
indirect atomic

(b) Vector Add

while (i < N)
v += A[i];
i++;

s_cfg(sa=A[i], sv+=sa);
while (i < N)

s_step(i);
v = s_load(sv);
s_end(sv,sa);

sv

saSemantically,
1 load & 1 add

(a) Vector Sum Config.

Get final value +=

++

+

Config.

Config. outer &
inner streams

while (u < N)
P, Q = Edges[u];
i = 0, s = 0;
while (i < Q P)

v = P[i];
s += C[v];

// ...

(d) Pull Page Rank s_cfg(se=Edges[u], sv=se.P[i],
sc=C[sv], ss+=sc);

while (u < N)
while (i < se.Q se.P)

s_step(i);
s = s_load(ss);
// ...

s_end(se, sv, sc, ss);

Config.
se

ss +=

Outer Inner

sc

sv

Get final indirect
reduction value

Config.

Figure 4: Near-Stream Computing ISA Examples

Computation is wrapped in a loop to facilitate pipelined
execution of instances of the near-stream instructions. These
functions have no memory access and are stackless. They use
s_load/store to communicate the stream inputs/result,
and s_step to advance to next ready computing iteration.
These instructions convey no shared memory semantics in
this context, and are only used for communication. This
approach is general enough for the targeted workloads.

Examples: Figure 4 shows four examples in the near-stream
computing ISA, each demonstrating a specific feature.

Reduction - 4(a): A reduction stream sv sums a load
stream sa. sv has value dependencies on sa and itself. The
in-loop s_load is eliminated as the reduction is decoupled
from the core. Instead, after exiting the loop, a s_load
retrieves the final result.

Store - 4(b): A store stream sc has two value dependencies
on load streams sa and sb. The s_store recieves both
the address and stored value from the store stream sc, and
semantically it completes several near-stream operations: 2
loads, 1 addition and 1 store.

Atomic - 4(c): A s_atomic instruction performs the
atomic operation on the indirect stream address, and returns
the new value, which is consumed by foo().

Nest - 4(d): To avoid frequent configuration of short inner
loop streams, we extend the stream ISA [67] to allow nesting
of stream configuration. The inner loop streams’ configuration
and trip count must only depend on outer stream or loop-
invariant data. Each outer stream iteration instantiates a new
inner loop stream. A conditional inner loop can also be nested,
as long as the condition purely depends on outer streams;
this is transformed into predication in the configuration.

Stream Configuration: After code generation, the s_cfg



instruction will be split into a sequence of instructions starting
with a s_cfg_begin, which triggers the hardware to read
the stream configuration from cache. This may be followed
by a sequence of s_cfg_input instructions, which feed
any runtime parameters to the hardware (e.g. trip count).
Finally, a s_cfg_end completes the configuration and the
stream can begin executing.

B. Compiler Support

The role of the compiler is to recognize streams by
analyzing address patterns (we take a similar approach as
prior work [67]), and assign computations to streams to
minimize communication. For the latter, we discuss here the
heuristics we use for each of the four compute types, within
the context of a static-single assignment compiler IR [39]:

Load: For each load stream, the compiler performs a BFS
on its user instructions, and checks if visited instructions
forms a closure, i.e. no outside users except the candidate
final instruction. If so, and the final instruction has a smaller
data type, the compiler slices out visited instructions, with
the final instruction as the return value. The compiler iterates
to find larger closures with fewer bits total in live outputs.

Store: Similar to loads, the compiler searches for instructions
computing the stored value, and records a value dependence
when encountering a load instruction (or its final instruction).

Reduce: Reduction variables are typically represented as phi
nodes in the loop entry basic block, and can be recognized
by searching backwards for computation instructions. The
initial value for reduction is recorded either directly in the
configuration (if constant) or as a live input at runtime.

RMW: A load and the following store to the same address
are merged into a single update stream. Atomics are handled
similarly to stores, with a possible return value. The compiler
only targets atomics with relaxed memory order, which
only guarantee atomicity and can be reordered with other
memory accesses. Therefore, they should not be used for
synchronization, e.g. locks. The compiler wraps the near-
stream instructions into a loop, and outlines this to a function,
with stream instructions to communicate the operands/result.
It also inserts necessary stream instructions in the original
program to communicate with streams, e.g. s_store.

C. Core Microarchitecture

The primary extension is the core’s stream engine (abbrevi-
ated SEcore), which is essentially a programmable prefetcher,
supporting the address and compute patterns discussed earlier.
Its role is to arbitrate memory requests between concurrent
streams, configured by s_cfg instructions, and provide data
to the core instructions through a FIFO interface (i.e. a load
and store FIFO for stream loads and stores).

Near-Stream Computation: Simple scalar near-stream in-
structions (e.g. min) are performed on the SE, similar to other
address computation. However, many important workloads

are data-parallel and require a vector unit that would be
inefficient to replicate. Instead, our approach is to use light-
weight thread contexts for executing more general near-stream
computation.

The stream computing manager (SCM) manages the
execution of near-stream thread contexts, arbitrating between
requests of the local streams on its SEcore, and remote streams
from its SEL3, as explained later. Instances of the near-stream
function are executed on a lightweight thread called a stream
computing context (SCC), for execution with simultaneous
multithreading (SMT) [52]. SCCs are lightweight, as near-
stream instructions do not contain loads/stores, and as such
do not incur long instruction latencies. Therefore, they are
allocated minimal physical registers and reorder-buffer (ROB)
entries, and no LSQ entries.

As explained earlier, instances of the near-stream function
are executed in a loop to avoid the pipeline bubble to
trigger a new computation. The SCM is responsible to
schedule computation instances onto iterations of this loop.
Near-stream instructions access the stream FIFO via stream
load/store instructions to read input streams’ data and output
results. Exceptions in SCCs (e.g. divided by zero) are
recorded in the output FIFO entries, and are triggered when
the core commits that iteration (similar to prior work [67]).
When an SE encounters a near-stream function for the first
time, it configures the SCM with the function pointer and any
loop invariant operands. Once started, the SCC keeps running
until blocked by unready stream inputs (via s_load), and
is terminated when reassigned to new a computation.

Overall, this scheme allows instruction-level parallelism
across near-stream function instances, and provides a low-
cost strategy for executing near-stream functions in the core.

Memory Ordering: Similar to prior work, a prefetch
element buffer (PEB) is added for memory disambiguation of
prefetched data before it is ordered by core memory access
instructions [67]; it is a logical extension of the load queue.
If an alias is found when checking against an earlier store,
all prefetched elements are flushed and reissued, and any
dependent stream element is also discarded and recomputed.

Relation to Stream-prefetching/floating: With the system
described so far, it is possible to enable stream-based prefetch-
ing without necessarily performing near-data computing. With
stream-based prefetching only, our design would perform
similarly to the stream-specialized processor (SSP) [67].

Stream-floating [68] is an alternate near-data approach
with a simpler ISA and microarchitecture, that can offload
only memory read streams with no computation. It supports
none of the near-data computing patterns identified in our
taxonomy, as it lacks ISA abstractions and microarchitecture
for 1. offloading computation, 2. inter-stream dependencies
for multi-operand computation, 3. remote writes, and 4.
streaming atomics. The following section will describe the
challenges and our approach for adding this support.
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IV. NEAR-STREAM COMPUTING

We first present an overview of the primary challenge and
solution, then detail the key innovation of range synchroniza-
tion in depth, and finally address crosscutting concerns.

A. Major Challenge and System Overview

Challenge and Insight: One major challenge is to synchro-
nize after decoupling streams and computations to the cache.
This involves maintaining the precise state and detecting
aliasing between streams and the core. A conventional core
uses a centralized LSQ to reorder aliased memory accesses.
However, in near-stream computing, a remote store stream
can also write to memory, making it especially challenging
to synchronize.

Intuitively, offloaded computations should not be aliased
with other streams or the core, as frequent synchronization
eliminates the benefits of offloading. Also, because streams
access a single data structure, their addresses tend to be
confined in a limited range. In this work, we will further
assume this observation extends to physical address ranges,
due to the use of large pages or the OS’s support for
transparently promoting continuous pages into huge pages
to reduce fragmentation [55]. Therefore, the synchronization
scheme can be coarse-grained and conservative, minimizing
the control at the price of false positives. The principle of
our approach, range-based synchronization (range-sync), is
to only synchronize every few iterations and check aliasing
against the range of touched addresses instead of individual
accesses2.

Proposed System Overview: Figure 5 shows our proposed
system. Besides the core stream engine (SEcore), we add an
analogous SE to shared L3 banks (SEL3) (Figure 6). The tile
where the stream is offloaded is called the “remote” tile.

Near-stream operation begins when the SEcore decides
offloading would be profitable, and sends the request to
the remote SEL3 (Figure 6), which requests the stream data
from the L3 cache and schedules computations (either on
a small scalar unit within the SEL3 if simple enough, or

2Larger but more accurate approximation could also be used to reduce
false positives, e.g. bloom filter used in BulkSC [14], and this would not
require per-data structure physical address contiguity.
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Figure 6: L3 Stream Engine (SEL3)

issued to the SCM within the same tile). The SEL3 also
forwards stream data to any dependent streams in other
remote SEL3s, and writes results to L3 for store/atomic
streams. The SEcore issues flow control credits and commit
messages to synchronize with remote SEL3s.

B. Range-Based Synchronization

We first introduce the key concept of ranges and required
hardware units. Then we present details of different phases
of range-sync, and how it maintains precise state.

Alias Check with Ranges: To amortize synchronization
overheads, alias check between core and offloaded streams
is performed at ranges of touched addresses instead of
individual accesses. Specifically, offloaded streams report the
accessed physical address ranges [min,max) to SEcore. When
the core commits an access, it checks against the range for
possible alias. Remote streams’ progress is either written back
after the core commits the corresponding iteration without
detecting alias, or discarded in cases of alias, context switch
or fault.

Hardware Units: We add a stream buffer to SEL3 to hold
operands and intermediate states before they are committed
(see Figure 6). The range unit listens to translated addresses
(by colocated L2 TLB) to build ranges for streams. SEL3
caches the current translation so there is only one TLB access
per page, (and it also participates in TLB shoot down). For
affine streams, since the address pattern is predefined, ranges
are built by SEcore instead of SEL3, further reducing the
synchronization traffic.

Coarse-Grained Protocol: We build the synchronization
protocol using ranges, with all control messages designed
to be coarse-grained, i.e. one for multiple iterations. This
amortizes traffic overhead, and is the key to retaining benefits
of decoupling computation to remote tiles. Details follow:

Stream Configure: SEcore makes the offloading decision
based on the stream’s configuration and history information
(similar to [68]). If a stream’s memory footprint (inferred
from the pattern and length) cannot fit in the private cache, it
can be directly offloaded. Otherwise, SEcore records its miss
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and reuse rate in the private cache as well as whether it has
aliased with other streams or core accesses. Only streams
with high miss rate and no reuse or aliasing are offloaded.

When SEcore decides to offload, it sends out a stream
configure message to SEL3, containing the stream’s config-
uration, hardware context id (same as core id if no SMT),
and address patterns for receiving streams (here A[] →
B[]) to determine its current location. When received, SEL3
starts to generate stream requests and schedule computations
(Figure 5 1 ).

Stream Forward: Once configured, SEL3 computes the
addresses and issues requests to the colocated L3 cache
controller. If the stream data is used by another offloaded
stream, SEL3 also generates the receiving stream’s address
of the same iteration, and sets the receiving SEL3 as the
requester so that the data is forwarded there (Figure 5 2 ).
The response contains the stream id and element index, and
is buffered in the receiving SEL3’s stream buffer. Streams
are issued round-robin.

Compute in SEL3: The issue unit schedules ready com-
putations to a scalar PE (for simple computations) or the
local core’s SCM within the same tile to fully reuse existing
hardware resources. Data in the stream buffer is tagged with
the core id, stream id and the iteration number to be able to
disambiguate multiple simultaneous iterations.

SCCs executing the same function can be shared among
streams from different threads, as each instance is stateless,
and this reduces the need to have many SCCs. SCCs in the
remote tile are released after all user streams are terminated
or migrated out. Since SEL3 sends memory requests directly
to the L3 cache, now there is no need for the core to issue
requests for s_store/atomic.

Precise State: Range-sync helps define the architectural state
of offloaded streams consistently with the core: a stream
element is considered committed if its first user instruction
is committed in the core. Figure 7(a) shows how range-
sync maintains the precise states for offloaded streams under
normal circumstances (R is the granularity in iterations).

To start the range-sync protocol, SEcore sends credits to
SEL3, allowing it to prefetch and forward the data. Meanwhile,
the range unit listens to the translated addresses and builds the
touched range [min,max) for each stream. After collecting
ranges for a few iterations (currently 8), SEcore checks if
there is aliasing between streams. If not, the core can commit

until the latest iteration with complete range info. Before
the core commits a load/store, it checks the address against
the ranges for possible alias, and terminates the offloaded
streams if it finds aliasing.

If there is no aliasing, SEcore sends commit messages to
SEL3 for store and RMW streams; only then can streams
write back to cache. Subsequently, SEL3 will reply to SEcore
with a “done” message, so that SEcore can allocate more
credits (Figure 5 3 - 5 ).

When SEcore detects an alias involving offloaded streams
(e.g. a false positive due to conservative range check),
or when a context switch or exception happens, SEcore
issues an end message to the remote SEL3 to write back
committed iterations and release the stream (Figure 7(b)).
After collecting all done messages from remote streams, the
precise state is restored and the core may continue with
streams back in the core. A fault in remote streams also
triggers the ending procedure to let the core manage, as
shown in Figure 7(c).

Stream Migrate & End: Similar to [68], streams automati-
cally migrate to the next L3 bank as necessary due to address
interleaving. To terminate a stream, SEcore sends out an end
message to SEL3 (Figure 5 6 ). Streams with known length
can be silently released in SEL3 (after committing all work).

Coherence & Consistency: SEL3 issues requests to the L3
controller to collect and write back stream data, which can
be served normally if no private cache has a copy. Otherwise,
depending on the request type (load or store), the L3 cache
controller reuses normal invalidation transactions to clear
private copies and get the latest version. Coherence states are
extended to lock the line for atomic operations (see §IV-C).

At the instruction level, near-data streams only support
weak consistency, as remote stores/atomics are written out
of order (serializing stores [48] is possible, but reduces near-
data benefits). It is the compilers responsibility to ensure
strong memory consistency for data-race free programs,
which we accomplish by limiting near-stream computation
to synchronization-free regions (except atomics with relaxed
ordering).

Resource Management: We statically divide the stream state
table and buffer in SEL3 among cores to avoid sharing. SEcore
keeps track of resource utilization and may pause issuing
credits to avoid possible deadlocks. Another approach is to
let SEL3 dynamically allocate resources among streams, and



have the SEcore terminate streams with no progress after
a timeout period (to break potential deadlock). This could
lower the hardware overhead, and is left to future work.

C. Efficient Indirection Support

Indirect computation can be offloaded along with the affine
stream. Figure 5 shows an indirect atomic increment. After
receiving the commit message, indirect store/atomic streams
issue the indirect request, compute the result in the indirect
SEL3, and reply to SEcore (Figure 5 7 - 9 ).

Intra-Stream Ordering: Range-sync only covers inter-
stream and core-stream aliasing. Aliasing within the same
stream is not a problem for affine patterns, as they are not
self-aliasing and written back in order. However, indirect
requests may arrive out of order and violate the memory
ordering.

To retain the ordering for indirect streams, the remote
SEL3 includes the last iteration issued to that bank in newly
issued requests. The indirect SEL3 can check this against the
latest iteration it has seen to detect missing inflight requests
and reorder them if needed.

Supporting Atomics: Indirect atomics are common in graph
workloads. To guarantee atomicity, the target cache line is
locked in the L3 and other accesses are blocked. This usually
takes only a few cycles since the computation is fairly simple.

However, the locked window is much longer if we have to
send back the value to the core for further processing and wait
for commit messages. To mitigate this, we observe that many
atomics do not change the value (e.g. compare-exchange
in bfs, min in sssp), and can be served concurrently by
recording them in the coherence state (similar to recording
the private sharers) and blocking others that modify the value.
This hardware multi-reader single-write lock eliminates on
average 97% of the contention for bfs_push and sssp,
and reduces the conflict rate to 0.6%. Atomics from the same
stream can always proceed even if they modify the same
memory, as they are ordered by SEL3.

Indirect atomics may also cause deadlocks, as locks are
acquired out of order but released in order when committed by
range-sync. The programming model requires shared memory,
and it is impossible to eliminate such deadlocks. Therefore,
SEcore must timeout an offloaded stream with no progress and
restore precise state (similar to Figure 7(b, c)). However, this
deadlock is very rare and never happened in our experiments.

Indirect Reduction: Reducing over indirect streams is more
difficult than affine reduction, as data are likely randomly
scattered among banks. A naı̈ve scheme to perform the
reduction sequentially, following the data, eliminates the
benefits and may introduce more traffic overheads.

To break the recursive dependence, we limit indirect
reduction to associative operations, e.g. +, ×. When of-
floaded, partial results are reduced in each visited indirect
bank, and collected by a multicast message when the stream

Field Bits Description Field Bits Description

A
ffi

ne

cid 6 Core id. ptbl 48 Page table addr.
sid 4 Stream id. iter 48 Current iter.
base 48 Base virt. addr. size 8 Element size.
strd 48 Mem-stride (3×) len 48 Length (3×)

In
d. sid 4 Stream id. size 8 Element size.

base 48 Base virt. addr.

C
m

p. type 4 Compute type. fptr 48 Func pointer.
sid 4 Arg. sid (8×). size 3 Arg. size 2n (8×).
ret 3 Ret. size 2n. data Const. arg.

Table IV: Near-Stream Computing Configuration

terminates. SEcore performs the final reduction, and only
considers offloading if the stream is longer than a threshold
(we choose 4× # of banks) to avoid overheads of short
indirect reduction.

Pointer-Chasing Stream: Pointer-chasing streams migrate
among LLC banks following the pointer chain. Similar to
indirect streams, SEL3 builds and sends back the accessed
range. By checking the sending bank of range messages,
SEcore knows the current location of the stream to send
future credits.

D. Stream Encoding

Table IV lists fields of a stream configuration, separated as
the access pattern and possible associated computation. We
support up to 3-dimension affine patterns. For near-stream
computing, we encode simple scalar computations directly
in type, e.g. +, ×, RMW, etc., which can be executed by
the ALU in SEL3. Otherwise, the computation is encoded
in the function pointed by fptr, and executed by the local
SCM. We support up to 8 inputs (required for 3D stencil) of
either streams (with non-zero sid) or constants (data). The
input stream records the receiving stream’s address pattern,
to determine where to forward the data.

To avoid excessive migration traffic, one optimization is
to remember visited banks, and only send core id, stream id
and changing fields (e.g. iteration number) when migrating
to a visited bank. To terminate an offloaded stream, the end
message is multicast to all configured SEL3s. This is left as
future work, as we found migration traffic is relatively low.

V. SYNCHRONIZATION-FREE OPTIMIZATION

Although range-sync amortizes the control overhead with
coarse-grained messages, it still introduces extra traffic and
longer dependence chains. In many scenarios, inter-stream
aliasing never happens, and programmers may be willing to
sacrifice precise state for performance. This inspires us to
introduce the synchronization-free optimization (sync-free),
which reduces the control overhead and allows offloaded
streams to commit ahead of the core.

Specifically, programmers can add a pragma
s_sync_free to a loop (Figure 8), indicating that streams
in this region never alias. When offloaded, such streams



System Params 2.0GHz, 8x8 Cores

IO4 CPU 4-wide fetch/issue/commit
(4-issue) 10 IQ, 4 LSQ, 10 SB

OOO4 CPU 24 IQ, 24 LQ, 24 SQ+SB
(4-issue) 256 Int/FP RF,96 ROB

OOO8 CPU 64 IQ, 72 LQ, 56 SQ+SB
(8-issue) 348 Int/FP RF, 224 ROB

Func. Units 4 Int ALU/SIMD (1 cycle)
(×2 for OOO8) 2 Int Mult/Div (3/12 cycles)

2 FP ALU/SIMD (2 cycles)
2 FP Div (12 cycles)

L1 D/I TLB 64-entry, 8-way
L2/SEL3 TLB 2k/1k-entry, 16-way, 8-cycle lat.

L1 I/D Cache 32KB, 8-way, 2-cycle lat.
Priv. L2 Cache 256KB, 16-way, 16-cycle lat.
Replace Policy Bimodal RRIP, p = 0.03

L1 Bingo Pf. 8kB PHT, 2kB region
L2 Stride Pf. 16 streams, 16 pf. per stream

NoC 256-bit 1-cycle link, 8x8 Mesh
5-stage router, multicast
X-Y routing, 4 corner mem. ctrl.

Shared 1MB per bank / 16-way
L3 Cache 20-cycle lat., MESI coherence

Static NUCA, 64B Interleave

DRAM 3200MHz DDR4 25.6 GB/s

SEcore 256B/1kB/2kB FIFO, 12 streams
(IO4-OOO8) 2 SCCs, total -/32/64 ROB-entry

4/4/4-cycle lat. to SCM

Stream Buf. 16kB FIFO

SEL3 12 streams per core, 768 total
64kB stream buffer, 1kB per core
4-cycle lat. to local SCM

Table V: System and Microarchitecture Parameters

Benchmark Addr. Cmp Parameters

pathfinder [15] MO. Store 1.5M entries, 8 iters
srad [15] MO. Store 1k×2k, 8 iters

hotspot [15] MO. Store 2k×1k, 8 iters
hotspot3D [15] MO. Store 256×1k×8, 8 iters

histogram Aff. Load 12M 32b value
8b key

scluster [15] Ind. Load 768k×64B, 5 iters
svm [51] Ind. Load 384k×64B, 2 iters

bfs push [9] Ind. Atomic Kronecker generated
pr push [9] Ind. Atomic 256k nodes

sssp [9] Ind. Atomic 3.6M edges
bfs pull [9] Ind. Reduce A/B/C: 0.57/0.19/0.19
pr pull [9] Ind. Reduce weight [1,255]

bin tree Ptr. Reduce 128k nodes, 8B key
512k uniform lookups

hash join Ptr. Reduce 8B key, 256k ./ 512k
Hit Rate 1/8

Table VI: Workloads (MO: Multi-Op)
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can commit immediately without sending commit messages
or indirect ranges. Streams still report their progress to
SEcore, and the core is limited to not commit ahead of
offloaded streams to avoid complete desynchronizing. This
eliminates some control overhead, and importantly, shortens
the dependence chain.

Coarse-Grain Context Switch: Without synchronization,
streams are free to commit until there are no remaining credits.
Therefore, once the credits are sent out the SEL3, there is
no sequential point in the original program order. However,
coarse-grain context switch is still possible by stopping credit-
issue and collecting all done messages. Offloaded streams’
progress are included in the architectural state and restored
during a context switch.

Fully Decoupled Loop: Synchronization-free streams break
the sequential execution semantics to enable aggressive
optimizations. As shown in Figure 8, all memory accesses
and computations in the inner loop are captured by streams,
and all inner loop streams’ parameters are from outer loop
streams. In such a case, the compiler can eliminate the loop,
and these fully decoupled streams are stepped independently
by SEcore, further reducing core instruction overhead.

More importantly, now SEcore can simultaneously advance
multiple instances of fully decoupled nested streams, increas-
ing potential parallelism (3 concurrent instances in Figure 8).

VI. METHODOLOGY

Evaluation Stack: We use gem5-20 [45] for execution-
driven, cycle-accurate simulation, extended with partial AVX-

512 support, with Garnet [3] for the NoC and DRAM-
sim3 [40] for DDR4. We implement an LLVM-based
compiler with x86 backed to recognize streams and associated
computations as described in §III-B.

Benchmarks: We simulate 14 OpenMP workloads from
Rodinia [15], MineBench [51] and Gap Graph Suite [9],
covering both affine patterns and irregular accesses (see
Table VI). bfs and pr have both a push (using atomic)
and pull (using reduction) version. Programs are compiled
with -O3 and vectorized with AVX-512. If not specified, we
simulate to completion.

Systems and Comparison: Table V lists system parameters.
Energy consumption is estimated using McPAT [41] at 22nm
(extended to model the stream engines). We use huge pages
for large data structures. In real systems, continuously-used
base pages are likely to be promoted into huge pages [55].

The baseline core’s L1 uses the Bingo [8] spatial prefetcher,
the best multi-core prefetcher in DPC3 [59]. We also add an
L2 stride prefetcher, as it improves performance. All other
designs have hardware prefetchers turned off:
• Inst-Level NDC (INST): Near-stream computations

are offloaded to LLC at iteration granularity, with
data forwarded to the “meet” of operands’ banks to
perform multi-operand computation (similar to Omni-
Compute [57]). Reduction cannot be supported due to
fine-grained offloading.

• Single-Line NDC (SINGLE): Single cache line ac-
cessing functions are offloaded to cache, and may be
chained to support pointer-chasing pattern. This resembles
Livia [44] and has sync-free optimizations in §V (as Livia
does because of programmer guarantees), but without
offloading to memory controllers.
INST and SINGLE both benefit from stream-based
prefetching even when the compute pattern is not sup-
ported. This makes them a stronger baseline than the
Bingo prefetcher.
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Figure 9: Overall Speedup over Base OOO8 Core

• In-core Streams (NScore): SEcore is only used as an
in-core prefetcher (similar to SSP [67]).

• Address-only Near-Stream (NSno comp): Streams may
be offloaded but without offloading computation (similar
to Stream Floating [68])

• Near-Stream Computing (NS): Computations are of-
floaded along with streams among last-level cache banks,
with range-sync ensuring sequential semantics and coher-
ence described in §IV.

• Synchronization-Free Optimizations: NSno sync turns
off range-sync as programmers guarantee alias-free.
NSdecouple further removes unnecessary fully-decouplable
loops so multiple streams may be executed simultane-
ously.

The best baseline for NS is INST (both programmer
transparent), and the best baseline for NSdecouple is SINGLE
(both programmer exposed).

VII. EVALUATION

Here we evaluate the overall performance and energy
efficiency improvements, generality, and autonomy of near-
stream computing with respect to prefetching and prior
near-data techniques. Then we discuss sensitivity studies
to computation throughput and offload latency, as well as
area overheads.

A. Overall Performance/Energy/Area

Figure 9 presents the speedup relative to the baseline
OOO8 core. Near-stream computing (NS) significantly outper-
forms prior prefetching and near-data techniques, achieving
3.19× speedup over the OOO8 core, 1.69× over NSno comp,
and 1.85× over INST. With sync-free support, NSdecouple
achieves 4.27× speedup over the OOO8 core and 2.12×
over SINGLE.

Figure 10 shows the normalized energy-performance
tradeoff of different core sizes across workloads. All core
types see similar speedups, with inorder cores benefiting the
most (4.28× for NS over IO4). Because of the reduced com-
munication and improved performance (less static energy),
NS and NSdecouple achieve 2.85×/ 3.52× energy efficiency
improvement respectively for OOO8 (similar tradeoffs for
less powerful cores).

Area: Most of the area comes from the SRAM to store
stream configuration and data, and we estimate the area
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using CACTI and McPAT (22nm). SEcore’s stream buffer
takes 0.09mm2 [68]. SEL3 requires a 64kB buffer to hold the
stream operands and results, which takes 0.195mm2. Adding
the SEL3’s stream configuration (48kB, 0.11mm2) [68] and
other components, the whole chip area overhead is 2.5% for
IO4 and 2.1% for OOO8 (SEcore in OOO8 has larger stream
FIFOs).

B. Advantages of Stream-Based Offloading

With programmer transparency, our NS matches or ex-
ceeds INST in all workloads, and our programmer-exposed
approach matches or exceeds SINGLE in all tested workloads
(while requiring simpler programmer support). This can be
attributed to advantages in generality and autonomy.

Generality: Figure 11 shows the breakdown of computing
micro ops associated with streams relative to total micro
ops (atomic and update are listed separately for clarity). The
second bar shows the fraction that is actually offloaded at
runtime. NS is capable of offloading computations in all
workloads, on average 93% of the possible operations are
offloaded. A few short reductions with reuse in private cache
(e.g. bfs_pull) are kept in-core to avoid frequent stream
configuration and termination.

These results also explain why INST underperforms on
the last 4 workloads: because it cannot support reduction
patterns and can only offload single iterations. Likewise,
it explains why SINGLE underperforms on the first four
workloads, as they are array codes that operate on multiple
arrays. The baseline prefetcher also only excels on affine
patterns. Indirect prefetchers may be able to recognize such
patterns [53,75], but require training at runtime.

Autonomy: A key benefit of stream-based offloading is to
provide autonomy, thus reducing NoC traffic. We evaluate
this by examining the NoC traffic and utilization in Figure 12.
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Figure 12: OOO8 NoC Traffic (top) and Utilization (bottom)

Traffic is classified as either offloaded: data and coordination
messages for near-data computing (e.g. credits, indirect
ranges, commits, etc.), control: coherence/prefetch messages,
or data: non-offloaded data accesses and writebacks.

NS heavily reduces traffic (by 69%) by co-locating data
and computation. This is accomplished by eliminating control
traffic for affine workloads, as now store streams can also
be offloaded. More importantly, it also greatly reduces data
traffic, as operands are directly forwarded to the bank of the
final store. Indirect workloads also benefit; e.g. in scluster
the stream sends back a scalar value of computed Euclidean
distance rather than the original high-dimension data, thus
reducing the data traffic. Indirect atomic streams in pr_push
perform the update in place without bringing the line to the
core. Range-synchronization itself accounts for only 11% of
NS’s traffic. For bfs_push and sssp, synchronization is
more expensive, as it takes two round trips to collect results
and commit the buffered indirect atomics.

With synchronization eliminated in NSdecouple, a total
traffic reduction of 76% is achieved. This is especially
helpful for performance on bin_tree and hash_join,
as multiple fully-decoupled inner streams can be offloaded
simultaneously.

Compared to prior near-data approaches, INST also reduces
traffic (by 49%), but has significant overhead due to fine-
grain iteration-level offloading. This is apparent on affine
workloads, where the traffic is 3-5× higher than NS. SINGLE
is of course highly-autonomous, and provides high traffic
reductions on the indirect workloads where it is applicable,
matching NSdecouple in many cases. The traffic is sometimes
higher, as SINGLE cannot achieve autonomy on indirect
atomics and falls back to iteration-level offloading.

C. Sensitivity to Offload Capability

Figure 13 shows the performance of NSdecouple, NSno sync
and NS with varying latency for SEL3 to issue a computation
to the SCM, normalized to NS-OOO8 with 1-cycle latency.
Irregular workloads are insensitive to this latency, as their
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computation is simple enough to be handled by the SEL3
(except one kernel in pr_push and pr_pull to update
the score). On the other hand, workloads with vector
computation are more susceptible to its changes, especially
for pathfinder and srad, which contains a significant
portion of short SIMD computations. Overall, near-stream
computing can hide much of this latency by overlapping with
other streams, and with 16-cycle latency the performance of
NSdecouple drops by 11% over the default 4-cycle latency.

We also show how the performance changes with limited
ROB entries for stream computing contexts (SCC) in Fig-
ure 14. As expected, graph and pointer-chasing workloads
are not bounded by a small ROB, as their computations
are mostly single scalar instructions with less than 10-cycle
delay. However, workloads with SIMD operations need a
larger ROB to overlap computations and hide the latency to
access the local SCM. On the other hand, this also shows that
near-stream computing shifts the pressure from data accesses
to the real computation, which accounts for the significant
speedup. We believe 2 SCCs is a reasonable choice for OOO
cores, since it requires less resources than a real hardware
thread (less ROB/IQ and no LSQ entries). Overall, we set
the default OOO8 configuration to 2 SCCs with total 64
ROB entries.

D. Other Sensitivity Studies

Affine Range Generation: For affine streams, since the
address pattern is known at configuration time, SEcore can
generate the ranges to avoid the traffic of sending them
from SEL3, at the cost of duplicate address generation and
translation. Figure 15 shows the speedup and traffic of five
affine workloads in NS with affine ranges sent by SEL3 or
generated by SEcore (default behavior). The traffic data is
classified as control, data and offloaded (same as Figure 12).
For indirect workloads, SEL3 always sends the range as ad-
dresses are data dependent. Overall, generating affine ranges
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at SEcore saves 15% traffic and achieves 5% performance
improvement. NSno sync and NSdecouple do not generate ranges
as they require no range-based synchronization.
Lock Type: Figure 16 shows the performance of exclusive
and multi-reader single-writer lock (MRSW) on the three
graph workloads with atomic operations (see §IV-C). Atomics
in pr_push always modify the value and thus do not
benefit from MRSW lock. For bfs_push and sssp,
many atomics do not change the value, and MSRW lock
eliminates 97% of contention with 1.29× speedup (NS). For
NSno sync and NSdecouple, since there is no synchronization,
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atomic operations can be
committed immediately
without waiting for the
core, significantly short-
ening the locking win-
dow. Thus, both lock
types achieve similar per-
formance. By default, we
use MRSW lock.

Scalar PE: Both SEcore and SEL3 has a scalar PE to handle
simple operations and avoid invoking SCM. Figure 17 shows
the performance sensitivity for this optimization. As expected,
affine workloads mainly contain vectorized instructions and
are not sensitive to this feature. Indirect and pointer-chasing
workloads benefit from this scalar PE as it reduces the
computing latency. Overall, for NSdecouple, adding the scalar
PE improves the performance by 2.5%, but indirect and
pointer-chasing workloads significantly benefit from this
(1.1× for hash_join), as it reduces the computing latency.

VIII. ADDITIONAL RELATED WORK

We discuss additional related work here; see §II-C for
comparison to sub-thread level offloading techniques.

Coarse-grain Offloading: Many near-data approaches use
coarse grain abstractions for deciding what to offload.
Kernel-level offloading is used in most domain-specific
systems [7,12,33,37,43,72,78,79].

Programmable architectures give varying degrees of control
over how to schedule threads near data [4,11,19,27,50].
Thread-level offloading also enables programmer-
transparency. For example, in the context of GPUs, TOM [30]
and Pattnaik et al. [56] transparently decide which code to
offload based on dynamic bottleneck analysis and predictive
models respectively. AMS adaptively schedules threads
in systems with asymmetric memories, using dynamically
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profiled miss curves [66]. While transparent, they only make
decisions at thread granularity.

Near What?: Near-data computing is applicable in many
contexts: in-cache [57], near mem-controller [44], near
router [61], near-memory [4], near-storage [38], etc. It
is future work to evaluate stream-based abstractions, co-
ordination, and offloading in these other settings. Also,
several works perform near-data computing using the memory
structure itself as bit-serial computation units, either in
SRAMs [2,20,23] or DRAMs [24,42,63]. These techniques
could provide highly-parallel computation substrates for use
in a near-stream system.

Speculative Multithreading: Swarm [34,35,64] along with
the T4 compiler [74], executes sequential programs spec-
ulatively in parallel as a series of tiny tasks. It supports
scheduling such tasks near on-chip data [36]. In T4, near-
data optimization is only applied for single cache line tasks.

Coherence and Synchronization: Recent works provide
better support for near-data accelerator (NDA) coherence
and synchronization. CoNDA speculatively executes NDA
kernels while recording their memory accesses in bloom
filters, condensing coherence traffic [11]. SynCron [27]
provides specialized synchronization without needing coher-
ence. Near-stream’s range synchronization protocol supports
coherence efficiently by condensing coherence information
on a per-stream basis, and is inspired by prior non-NDA
work [13,14,46,47,58,60,76].

Prefetching: Prodigy [65] encodes indirect access patterns
(similar to nested streams) in the program to efficiently
prefetch into L1 cache. Event-triggered prefetcher [6] and
Minnow [77] are programmable private-cache prefetchers for
irregular accesses. However, prefetching-only techniques still
suffer from the traffic overhead to fetch data into the core. De-
coupled spatial architectures also leverage stream information
for prefetching in accelerator designs [16,17,54,69,70].

EMC [28] augments a memory controller with the capa-
bility to execute miss-generating data-dependent instructions.
This does provide support for near-data offloading, but only
for address generation.

IX. CONCLUSION

This work explores the idea of using streams as the
abstraction for near-data computing. Streams are ubiquitous in
data-processing kernels, they enable coarse-grain offloading
protocols with low overhead, and they are simple enough



to be extracted with modest compiler extensions. Our
implementation enables near-data processing with either zero
or minimal (via sync-free) programmer effort, as the compiler
and microarchitecture work together to recognize near-stream
computing opportunities while retaining precise state. Further,
it requires little additional hardware, as the core’s pipeline
is reused for near-data computation through multithreading.

More importantly, this work breaks with the core-centric
view, and enables a new class of optimizations for memory
and communication-bound workloads. We believe this ap-
proach can enable continued performance scaling and energy
efficiency improvements in future large-scale systems.
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