
Affinity Alloc: Taming Not-So Near-Data Computing
Zhengrong Wang
seanzw@ucla.edu

UCLA, USA

Christopher Liu
chrisliu@cs.ucla.edu

UCLA, USA

Nathan Beckmann
beckmann@cs.cmu.edu

CMU, USA

Tony Nowatzki
tjn@cs.ucla.edu
UCLA, USA

ABSTRACT
To mitigate the data movement bottleneck on large multicore sys-
tems, the near-data computing paradigm (NDC) offloads computa-
tion to where the data resides on-chip. The benefit of NDC heavily
depends on spatial affinity, where all relevant data are in the same
location, e.g. same cache bank. However, existing NDCworks lack a
general and systematic solution: they either ignore the problem and
abort NDC when there is no spatial affinity, or rely on error-prone
manual data placement.

Our insight is that the essential affinity relationship, i.e. data A
should be close to data B, is orthogonal to microarchitecture details
and input sizes. By co-optimizing the data structure and capturing
this general affinity information in the data allocation interface,
the allocator can automatically optimize for data affinity and load
balance to make NDC computations truly near data.

With this insight, we propose affinity alloc, a general framework
to optimize data layout for near-data computing. It comprises an
extended allocator runtime, co-optimized data structures, and light-
weight extensions to the OS and microarchitecture. Evaluated on
parallel workloads across broad domains, affinity alloc achieves
2.26× speedup and 1.76× energy efficiency over a state-of-the-art
near-data computing technique with 72% traffic reduction.

CCS CONCEPTS
• Computer systems organization→Multicore architectures;
• Software and its engineering → Allocation / deallocation
strategies.

KEYWORDS
Near-Data Computing, Data Layout, Data Placement, Data Struc-
ture Co-Design, Memory Allocation

ACM Reference Format:
Zhengrong Wang, Christopher Liu, Nathan Beckmann, and Tony Nowatzki.
2023. Affinity Alloc: Taming Not-So Near-Data Computing. In 56th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’23), Octo-
ber 28-November 1, 2023, Toronto, ON, Canada. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3613424.3623778

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3623778

1 INTRODUCTION
As systems scale aggressively in the number of cores and mem-
ory channels, data movement has become increasingly the bot-
tleneck for the von Neumann architecture. To mitigate this, ar-
chitects proposed various near-data computing (NDC) techniques
to offload computation to the memory hierarchy, e.g. last-level
cache (LLC) [10, 37, 75, 93, 96], on-chip network router [81], mem-
ory [4, 6, 41, 43, 44, 56, 58, 60, 89], storage [57, 103], or multiple
levels [36, 62]. By not bringing the data all the way to the core, near-
data computing can achieve an integer multiple of performance and
energy efficiency improvement, and is the key to continue efficient
scaling for future systems.

However, simply pushing computing into the memory hierarchy
does not guarantee that computation is now closer to the data,
especially when the computation accesses more than a contiguous
piece of data. Without a suitable data layout, the required operands
may be scattered far away from each other. Fig 1 demonstrates,
with Fig 1(a) depicting a conventional system. Fig 1(b) shows an
NDC vector addition, where arrays not aligned in memory cause
extra communication to collect operands. Fig 1(c) shows similar
overheads for indirect accesses, which dominate graph processing
workloads to access neighboring vertices. Naïvely offloading com-
putation near data may yield no data movement reduction or even
hurt the performance. Therefore, an intelligent data layout decision
is essential to fully realize the potential of near-data computing.

Despite its importance, prior near-data computing work either
relies on manual coarse-grained data partition on reserved scratch-
pad space using customized APIs [4, 20, 30, 44, 81], or requires
domain-specific preprocessing (e.g. graph partitioning) [40, 41].
Other work simply is oblivious to the data layout, and falls back
to the conventional computing paradigm when NDC is not prof-
itable [6, 43, 62, 75, 88, 96]. They all fall short of providing a general
and systematic solution to enabling guided and efficient data layout.
Challenges: We provide the first general and programmable frame-
work that automatically optimizes data layout for near-data com-
puting. This is challenging as a hypothetical optimal data layout
requires coordination of the entire system stack: to support cus-
tomized data placement in the microarchitecture, to manage virtual
to physical address translation, to expose network topology to the
software, etc. Clearly such a complex approach is not ideal.

This calls for general yet concise abstractions at each level of the
system to efficiently convey the information required for intelligent
data placement decisions. For generality, the interface should be
expressive to specify broad data layout requirements, from simple
strided layouts to complex fine-grained pointer-based alignment.

https://orcid.org/0000-0003-2366-4267
https://orcid.org/0000-0002-0917-6358
https://orcid.org/0000-0001-6301-714X
https://orcid.org/0000-0001-8483-3824
https://doi.org/10.1145/3613424.3623778
https://doi.org/10.1145/3613424.3623778

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Zhengrong Wang, Christopher Liu, Nathan Beckmann, and Tony Nowatzki

(a) In-Core Computing (b) Not-So Near-Data Computing (c) Indirect Access A[B[i]]

❶ Offload A[i] -> C[i]

❶ Req./Resp. B[0:N)

❶ Offload B[i] -> C[i]

❸ Req. A[B[i]]

❶ Offload B[i], A[B[i]]

❷ Resp. B[0:N)

❷ Req./Resp. C[0:N)

C[i] += A[i] + B[i]
❶ Req./Resp. A[0:N)

❷ Load B[i]

❸ Req. A[B[i]]

Shared
L3 Bank

R
o

u
ter

L1 I
L1 D

SEcore

SEL3

Core
L2

SCM

L3
Tags

IOT

Ta
gs

IO
T

(d) NSC Microarchitecture

❶ Offload C[i]=A[i]+B[i]

Interleave
Override
Table

❷ Resp. A[0:N)

❸ C[i] = A[i] + B[i]

 Extra messages (in red) that could be eliminated by data affinity optimization.

Figure 1: Affinity Optimization Opportunities in Near-Data Computing (View in Color)

For simplicity, the interface should only convey the minimal essen-
tial information across layers to maintain portability. This works in
both directions: the software should be agnostic to the microarchi-
tecture, while the hardware should be oblivious to the actual data
structures. The interface should be compatible with general pro-
gramming languages and be expressive enough to enable advanced
layout optimizations for near-data computing.
Insight I: To tackle these challenges, our first insight is that data
placement can and should be optimized with data allocation. This is
possible because most data layout requirements are known at allo-
cation time [66], e.g. when allocating a linked list node, the previous
node is already allocated, and if the new node can be placed closer
to it, we can significantly reduce data movement when chasing the
pointer. Also, picking the optimal data layout at allocation time
saves the overhead of remapping later. Lastly, it incurs marginal
programming complexity if the allocator can be reused as the new
data placement interface. However, existing data allocators are ei-
ther unaware of the data placement (e.g. malloc), or are imperative
and opaque (e.g. numa_alloc_onnode), still leaving the placement
decision to the programmer. We need a better allocator.
Insight II: Secondly, instead of directly dictating the data place-
ment, the new allocator interface should capture the essential data
alignment constraints for efficient near-data computing. Such con-
straints are general to describe complex data affinity relationships,
e.g. the new linked list node should be close to the previous one.
Also, they are determined by algorithms and data structures, but
orthogonal to the microarchitecture details. This is crucial to main-
tain transparency and portability, freeing programmers from the
burden of manual placement for each hardware generation.
Insight III: Perhaps most importantly, exposing a new allocator
interface unlocks a variety of new opportunities to co-optimize the
data structure to data affinity in NDC scenarios. For example, in
graph algorithms, a global queue can be replaced by a spatially dis-
tributed queue to avoid remote accesses when pushing a new vertex
into the frontier. Another example is using linked lists to replace
the index array B[i] for indirect accesses A[B[i]]. Conventionally,
traversing a linked list requires costly pointer chasing and is not as
efficient as an array. However, it provides the flexibility to place the
index closer to the destination data A[B[i]], and may yield higher
performance in NDC. Such opportunities are impossible without
the new allocator considering data placement.

Our Approach: To summarize, we name our approach affinity
alloc, as it systematically captures and optimizes data affinity for
near-data computing. It contains a carefully designed allocator
interface to capture the affinity information, a runtime library to
lower the alignment constraints to an efficient data layout based
on the underlying hardware details, and a lightweight yet general
microarchitectural scheme to control the data layout. This design
enables significantly more flexibility over manual data placement –
instead of fixing data structure locations, we only describe how data
structure elements should be kept close together. More importantly,
it enables co-optimization between data structures and data layout
to make NDC computations truly near the data.

In this work, we apply affinity alloc to optimize data placement
for near on-chip SRAM computing, i.e. the last-level cache (LLC).
The LLC-level is promising because capacity continues to scale in
modern CPUs (768MB on AMD EPYC 7773X [1]), and many algo-
rithms can be tiled for locality in the LLC. However, because affinity
alloc addresses the fundamental data placement problem, the prin-
ciples and its implementation can be generalized to other near-data
computing levels and techniques, e.g. near memory controller, in
HMC die, near storage, etc.
Contributions: Evaluated on parallel workloads with a cycle-level
simulator, affinity alloc achieves 2.26× speedup and 1.76× energy
efficiency for a state-of-the-art near-data computing technique with
72% NoC traffic reduction, and 7.53× speedup and 4.69× energy
efficiency over a wide OOO CPU. We also show that it is critical to
codesign the data structure to optimize for data affinity in near-data
computing. Specifically, our main contributions are:
• A general allocation interface to capture data alignment con-
straints for efficient near-data computing.

• A full-system implementation of affinity alloc, with a light-
weight runtime library and 𝜇arch extension.

• Software co-optimizations that leverage the new interface to
fully realize the potential of near-data computing.

• Detailed evaluation of how the new interface helps optimize the
data layout and improves near-data computing.

Paper Organization: §2 introduces the baseline NDC. §3 discusses
the data layout challenges and overviews our approach. §4 covers
the basic interface and extensions to support affine layout, while §5
extends to irregular data layout. Methodology and evaluation are
in §6 and §7. Further discussion and related work is in §8 and §9.

Affinity Alloc: Taming Not-So Near-Data Computing MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

st

sx

sv

sq

st

sx

sv

sq

st

sx

sv

sq

st

sx

sv

sq

#pragma s_sync_free

for (i = 0:N)
 C[i] = A[i]+B[i];

#pragma s_sync_free

while (ptr && !hit)
 v, ptr = *ptr;
 hit = v == t;

sp

(b) Search in List

 Legend: Address Dep. Value Dep. Predicate Dep.
 Stream with N-S Insts. sa,b,c: Stream id.

Stream Dep. GraphOriginal Pseudo Code

sa

sb

sc

Dynamic break.

(a) Vector Add

= C[0:N] = sa+sb

#pragma s_sync_free

for (i = 0:N)
 u = Queue[i];
 L, R = CSR[u];
 p = Parent[u];
 for (j = L:R)
 v = Edges[j];
 x = cas(P[v],-1,p);
 if (x)
 tail = atomic_inc(&q_size, 1);
 Queue[tail] = v;

(c) Push BFS

sp
st

Outer Inner

sx

sv

hit=(sp.v==t)

!hit && sp.nxt

se

sq

 Sync-free breaks seq. semantics
 → Concurrent inner streams

su

= B[0:N]

= A[0:N]

= Queue[0:N]

= CSR[su]

= Parent[su]

= Edges[se.L:se.R]

= cas(P[sv],-1,sp)

= sx?inc(1)

= sx?Queue[st]=sv

Pointer-chasing pattern.

Affine access pattern to A[].

Comparison to t.

Compute C[i]= A[i]+B[i].

Affine access pattern to B[].

Config

Predicated by the
atomic stream sx.

sp=sp.nxt

Figure 2: Example Near-Stream Computing Programs

2 BACKGROUND ON NEAR-DATA BASELINE
In this work, we leverage near-stream computing (NSC) [96] as the
state-of-the-art baseline near-data computing frameworki. Here we
give background on this framework and point out opportunities
for affinity-aware allocation.

2.1 Basic Near-Stream Computing

Stream Definition: NSC leverages “streams” as the basic unit for
near-data computing, which has been widely adopted in general
purpose computing [82, 95, 97] and reconfigurable accelerators [28,
61, 71, 98, 99]. Streams are defined by the long-term access pattern
to the data structure, e.g. affine pattern A[i], indirect A[B[i]]
or pointer-chasing, and may contain NDC instructions. They are
independently scheduled either at the core or near data at L3 banks.
Affine Stream: Fig 1(a) shows a multicore system with vector
add C[i]=A[i]+B[i]. Tiles are connected by a mesh network and
contain a core, private L1/L2 and a shared L3 cache bank. One major
overhead here is the unnecessary traffic to fetch and write back the
arrays, which have no reuse at all. Such overhead is only going to
be more severe as the system scales up and the data grows.

To mitigate such overhead, in Fig 2(a), the near-stream comput-
ing compiler recognizes that there are three affine streams: two load
streams sa=A[0:N], sb=B[0:N], and one store stream sc=C[0:N]. It
also extracts and associates the computation (i.e. addition) with the
store stream sc. This forms a stream dependence graph, in which
edges represent the elementwise dependence between streams. In
Fig 1(b), all streams are offloaded to the shared L3 banks where the
data resides and automatically migrate to the next bank following
the access pattern. Stream sa and sb directly forward their data to
stream sc. Stream sc performs SIMD ops on a spare thread of the
remote core and then writes directly to L3.
i§9 covers other related general near-data computing works and how they can benefit
from affinity alloc.

An ideal data layout would colocate corresponding elements of the
three arrays in the same bank to eliminate the data forwarding traffic
(red arrows in Fig1(b)), which is the goal of this work.

Pointer-Chasing Stream: Fig 2(b) shows a lined list traversal. The
pointer-chasing stream sp=sp.nxt can be offloaded to compare
against the target t. It also checks the loop condition based on the
next pointer and comparison result. If evaluated to false, the stream
is terminated, and the final value of hit is returned to the core.

An ideal allocator would place neighboring nodes in the same or
close banks to reduce pointer-chasing distance.

Indirect Stream: Indirect accesses like A[B[i]] can also be of-
floaded. Fig 2(c) shows a push-based BFS kernel. The inner loop con-
tains an indirect atomic access P[Edges[i]] to update the neigh-
boring vertex’s parent. Fig 1(c) shows the indirect stream offloaded
along with the base stream: it reads the edge array Edges[], gen-
erates indirect addresses and sends out indirect requests to target
L3 banks. This eliminates the round-trip to the core for address
generation.

An affinity-aware allocator would place B[i] closer to the pointed
A[B[i]] to reduce indirect traffic.

2.2 Near-Stream Computing Details
For completeness, here we include other details of NSC that are not
required to understand affinity alloc. Readers should feel free to
skip this subsection.
Synchronization: The programmer annotates the loop with
#pragma s_sync_free, indicating that there is no aliasing be-
tween core and stream, and no sequential semantics are needed.
This enables the compiler to eliminate the original loop. Synchro-
nization between the core and offloaded streams now relies on a
coarsed-grained flow control scheme, i.e. one message contains
credits for a few iterations. Similarly, context switch is possible by
stopping issuing credits and waiting until all streams have reached
the same point. Streams’ progress is saved in the architectural state.
Predication: In Fig 2(c), if the vertex v has not been visited, i.e.
compare and swap (CAS) operation succeeded, it is pushed into
the queue for future processing. This push operation is broken into
two streams: an atomic stream st to increment the tail pointer of
the queue, and a store stream sq to write v into the queue. Both
streams are predicated by the atomic cas stream sx, and will be
skipped when sx returns false.
Nested Stream: Finally, the inner loop streams in Fig 2c only take
parameters from outer loop streams or some loop invariant values.
Hence, the compiler can nest the inner loop streams into outer
loop streams. Now, every iteration of the outer loop stream can
configure an instance of the inner loop stream. Predication to skip
the inner loop for certain outer loop iterations is supported. More
importantly, this unlocks more parallelism by allowing multiple
instances of inner loop streams to be executed concurrently, as no
sequential semantics are required here for correctness.
Microarchitecture: Fig 1(d) shows the microarchitecture of near-
stream computing, with the new components in gray. Stream en-
gines are hardware units executing streams. The core stream engine
(SEcore) decides whether to execute the stream in the core (when

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Zhengrong Wang, Christopher Liu, Nathan Beckmann, and Tony Nowatzki

(a) Naïve NSC

A[], B[] Mapped
Banks

C[] Mapped
Banks

Near-Stream
Computation

(b) Pathological Bisection Case (c) Affinity-Aware NSC

 C[i]=A[i]+B[i]

Bisection
Bottleneck

Aligned A[], B[], C[]
Mapped Banks

Figure 3: Affine Data Layout for Vec Add

the stream is short or has high reuse in the private cache) or offload
it to LLC. If offloading, it sends a configure packet to the L3 stream
engine (SEL3), which starts to access the L3 bank and perform NDC.
To reduce overheads, synchronization between SEcore and SEL3 is
coarse-grained, i.e. one message for multiple iterations.

Both SEcore and SEL3 contain ALUs to handle simple scalar oper-
ations, e.g. addition, multiplication, comparison, etc. More complex
computations are outlined into a separate function and lowered
into the native ISA by the compiler (x86 in this work). The stream
configuration contains the function pointer, and the stream com-
puting manager (SCM) assigns these functions to lightweight spare
simultaneous multithreading (SMT) threads. Since there is no mem-
ory access nor control flow in near-stream computation, it can skip
the LSQ and branch prediction. Near-stream computation can also
be executed by special hardware, e.g. FPGAs [62], but is beyond
the scope of this work. For context switch, offloaded streams are
terminated with progress recorded in architectural states. When
switching back, streams resume execution in SEcore.

3 MOTIVATION AND OVERVIEW
Here we first motivate affinity alloc by understanding the critical
affine and irregular layout challenges in near-data computing. Then
we overview how affinity alloc tackles these two challenges.

3.1 Affine Data Layout
We first consider a simple vector addition: C[i]=A[i]+B[i]. As
shown in Fig 1(b) and Fig 3(a), When offloaded to the L3 cache, sa
and sb forward the data to sc, which writes back the added result.
Intuitively, the placement of array A[], B[] and C[] in the shared L3
banks directly affects the data forwarding traffic and performance.

Fig 3(a) shows a naïve affine data layout for the vector addition.
For simplicity, we assume A[] and B[] are aligned in the shared L3
cache. However, since A[] and B[] are not aligned with C[], we
have to forward both operands through the network, leading to not
so near-data computing. Such oblivious data layouts may even lead
to pathological cases. For example, in Fig 3(b), C[i] is mapped two
banks behind A[i] and B[i], causing a bisection bottleneck in the
network and significantly reducing the effective bandwidth.

Therefore, an intelligent near-data computing system should be
aware of the data affinity requirement and colocate all three arrays
as shown in Fig 3(c). This eliminates the data forwarding traffic and
fully unlocks the potential of near data computing.

To quantify the impact of affine data layout, Fig 4 shows the per-
formance and network traffic of vector addition with various data
layouts, normalized to baseline in core computing (no offloading).
We use an 8x8 mesh NoC and control the data layout such that

In-Core
Δ Bank 0

Δ Bank 4
Δ Bank 8

Δ Bank 12

Δ Bank 16

Δ Bank 20

Δ Bank 24

Δ Bank 28

Δ Bank 32

Δ Bank 36

Δ Bank 40

Δ Bank 44

Δ Bank 48

Δ Bank 52

Δ Bank 56

Δ Bank 60

Δ Bank 64
Random

0
2
4
6
8

Sp
ee

du
p

In-Core
Δ Bank 0

Δ Bank 4
Δ Bank 8

Δ Bank 12

Δ Bank 16

Δ Bank 20

Δ Bank 24

Δ Bank 28

Δ Bank 32

Δ Bank 36

Δ Bank 40

Δ Bank 44

Δ Bank 48

Δ Bank 52

Δ Bank 56

Δ Bank 60

Δ Bank 64
Random

0.0
0.2
0.4
0.6
0.8
1.0

No
C

Ho
ps Offload

Data
Control

Figure 4: Impact of Affine Data Layout on Vec Add

Ind. Req.Edge Cache Lines
V: Out Vertex

Vertex
Cache Lines

2930

1617 1928

30312425 2627 2829

22231617 1819 2021

14158 9 1011 1213

6 7

(a) Naïve NSC (Intrlv=1$Line) (b) Idea Affinity-Aware NSC

0 1 2 3 4 5

0 1 2930

1617 1928

30312425 2627 2829

22231617 1819 2021

14158 9 1011 1213

6 70 1 2 3 4 5

0 1

4 5 1 19 Stream
Migrate

Indirect: 19 Hops
Migration: 3 Hops

Indirect: 3 Hops
Migration: 5 Hops

Figure 5: Irregular Data Layout for Graph Edge List

bank 𝑖 always forwards to bank (𝑖 +Δ) mod 64 (methodology in §6).
Although near-data computing always outperforms the baseline,
its performance is very sensitive to the data layout (from 1.1× to
7.2×), as it dictates how much data traffic to forward the operands.
A random data layout (i.e. each virtual page is mapped to a random
physical page) avoids the pathological behavior, but only achieves
42% of the performance when data is aligned.
Challenges: Even for this simple case, optimizing the data layout
already requires optimizations across the whole system stack: to
convey the data alignment requirement from the application, to
translate virtual addresses in the OS, to control the physical cache
line mapping in L3 banks, etc.

3.2 Irregular Data Layout
The analogous data layout problems for irregular data structures are
even more complicated to solve. Fig 5(a) shows the baseline place-
ment for a graph, using a compressed sparse row (CSR) format. We
assume each cache line can hold two vertices (blue) or edges (green),
and L3 banks are interleaved at cache line granularity. Many graph
workloads (e.g. BFS, SSSP) scan edges and update pointed vertices.
When offloaded in NSC, it takes 19 hops for indirect accesses to
the vertices (green arrows) and 3 hops for stream migration (black
arrows). However, as shown in Fig 5(b), if we can place the edges
closer to the pointed-to vertices, we can significantly reduce the
indirect access traffic to only 3 hops at the cost of a slightly longer
migration distance.

Affinity Alloc: Taming Not-So Near-Data Computing MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

pr_push bfs_push sssp pr_pull bfs_pull geomean.0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

4.16.97.4

pr_push bfs_push sssp pr_pull bfs_pull avg.
0.0
0.2
0.4
0.6
0.8
1.0

No
C

Ho
ps

Base Ind-4kB Ind-1kB Ind-256B Ind-64B Ind-Ideal

Offload
Data
Control

Figure 6: Impact of Irregular Data Layout

To quantify such benefit, Fig 6 shows the speedup and traffic re-
duction if we can break the edge list in the CSR format into chunks
of various sizes and freely map them to the L3 bank with minimal in-
direct trafficii. Smaller chunk sizes enable more fine-grained control
on data layout. With 64B chunk (a cache line), irregular data layout
optimization yields 60% traffic reduction and 2.14× speedup. An
ideal configuration without indirect traffic achieves 4.1× speedup.

This demonstrates the potential of having an optimal data layout
for irregular data structures, including other pointer-based data
structures, e.g. linked lists, trees, etc. By optimizing the data layout,
the overhead of irregular accesses can be significantly reduced.
Challenges: Although promising, irregular data layout is even
more challenging, as it requires fine-grained cache line layout and
load balancing to ensure bank-level parallelism.

3.3 Affinity Alloc Approach Overview
To exploit these opportunities, we propose affinity alloc, a system-
atic data placement solution that optimizes data affinity during
allocation for near-data computing. Fig 7 overviews the approach
across different system levels.

Instead of having an imperative interface that exposes microar-
chitectural details and leaves the placement to the programmer
(e.g. libnuma), an affinity alloc application only needs to convey
the affinity information through the declarative allocator API. For
example in Fig 7, when allocating a tree node, the pointer to the
parent node is passed in so that the allocator can try to allocate
the new node to the same bank as the parent node. Such affinity
information is general enough to capture the essential relationship:
that these pieces of data are used together and should be colocated.

To coordinate affinity information across all system levels, affin-
ity alloc is designed by the divide and conquer principle: each layer
tackles a simpler subproblem and only minimal information is ex-
changed between layers. Each layer is almost transparent to other
layers. Specifically:
• Application: We choose to enhance the allocator with affinity
information (either an affine pattern for affine layouts or a list
of affinity addresses for irregular layouts). This significantly
reduces the programming complexity as affinity information
can be straightforwardly extracted from the data structure, e.g.

iiSubject to a max 2% load imbalance between L3 banks, by moving chunks with the
least traffic reduction to the least occupied bank.

5
2

1 3 8
7

... ...

Data Structure Affinity Allocation

n5 = malloc_aff(64);
n2 = malloc_aff(64, n5);
n1 = malloc_aff(64, n2);
n7 = malloc_aff(64, n5);
...

Affinity Info Allocated Addr

Expand Interleave Pool Expand Pool + Topology

Per-Pool Interleave μArch Details

564B Intrlv. Pool

5
2

1

7

...

Customize L3 bank
interleave for pool.

Reduced ptr-chasing hops.
Balanced load between L3.

83

...

Legend:
2x2
Mesh

Cache Line at
Bank 0, 1, 2, 3
Cache Line at
Bank 0, 1, 2, 3

Affinity Info

Load Balance

Topology

Cross-Layer Info
Intra-Layer Info

Select
Bank

Interleave Pool

Allocate at
Bank

Free List

Allocated Addr

7 1 8 2 3
128B Intrlv. Pool ...
256B Intrlv. Pool ...
...

Figure 7: Affinity Alloc Approach Overview

parent node in the binary search tree. Also, since affinity infor-
mation is purely determined by the algorithm and data structure
but orthogonal to the underlying microarchitecture, portability
is maintained by linking a platform-optimized runtime.

• Runtime: Similarly in Fig 7, The runtime is unaware of the
data structure, but simply takes the affinity information and
underlying network topology to determine the interleaving and
the bank to allocate from. It also tracks the load balance to avoid
creating a hot spot in the system. For example, the node n2 is
colocated with its parent n5 for affinity, while n7 is spilled to
bank 1 for load balancing (see bottom of Fig 7). To allocate, the
runtime maintains a free list that is aware of the L3 banks and
may require more space from the OS.

• OS: The OS simply manages a pool for different interleaving
sizes. Interleave pools are reserved in virtual address space when
starting a program, and backed by contiguous physical addresses
similar to a segment when accessed. It also passes the topology
information to the runtime but is oblivious to the data structure
or the load balance.

• Microarchitecture: It supports customizable interleaving for
physical addresses within interleave pools but is unaware of
any program-specific details.

Data Structure Co-Optimization: Affinity alloc also enables
novel data structure co-optimizations to harness the new opportu-
nities from managing the data affinity. One example in the context
of iterative graph processing is a spatially distributed work queue,
leveraging the affine layout. Compared to a global queue, it reduces
the overhead of managing the frontier in BFS and SSSP, as vertices
can be pushed to the aligned local sub-queue with no remote ac-
cesses. This is possible in accelerators [2, 26, 47, 48, 72], but difficult
for general-purpose processors without control over affinity.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Zhengrong Wang, Christopher Liu, Nathan Beckmann, and Tony Nowatzki

Also, by supporting fine-grained irregular data layout, we can use
a linked list to replace the array holding all edges in the compressed
sparse row format (CSR). This provides the flexibility to colocate
edges with the outgoing vertices, reducing the indirect traffic. To
our knowledge, this optimization has not been explored even for
accelerators, because of the lack of fine-grain affinity control.

More generally, data structures for near-data computing face
significantly different tradeoffs. While contiguous arrays often have
the benefit of simple prefetching on general architectures, affinity-
based allocation and near-data computing offer significant advan-
tages to pointer-based structures. Thus, affinity alloc opens new
opportunities for codesign in the near-data computing era, which
would otherwise be impossible or impractical to program.
Affinity Alloc Overview: Overall, affinity alloc adopts a clean
layered design: the application specifies the affinity information,
the runtime performs the affinity-aware allocation with load bal-
ancing, the OS manages the pools with different interleaving sizes,
and the microarchitecture simply customizes the interleaving for
each pool. With these lightweight extensions and data structure
co-optimization (see §5), affinity alloc provides a general and sys-
tematic solution to make NDC computations truly near data.

4 AFFINE DATA LAYOUT
In this section, we take a bottom-up view: how to efficiently sup-
port customizable mapping from virtual address space to L3 bank
locations in the microarchitecture and OS, then how the application
and runtime leverages it to optimize for data affinity.

4.1 Mapping Virtual Addresses to L3 Banks
One obstacle to NDC data affinity optimization is that the mapping
from virtual addresses to shared L3 banks is hidden from the user
space or even the OS. First, address translation is managed by the
OS. Also, modern CPUs usually employ complex hash functions
to map a physical address to an L3 bank [32] to exploit bank-level
parallelism and avoid hot spots. Therefore, we need to expose the
mapping from virtual addresses to L3 banks to the software.
Interleave Pool: As shown in Fig 7, we introduce interleave pools.
Each interleave pool is a reserved segment in the virtual address
space, and addresses within an interleave pool are guaranteed to be
mapped to L3 banks with the specified interleaving. For example,
64B cache lines within the 64B interleave pool are linearly mapped
to L3 banks one by one. Given a pool with interleaving 𝑖𝑛𝑡𝑟𝑙𝑣 and
starting virtual address 𝑠𝑡𝑎𝑟𝑡 , we can compute the L3 bank for a
given virtual address 𝑣𝑎𝑑𝑑𝑟 within the pool:

bank(𝑣𝑎𝑑𝑑𝑟) = ⌊ 𝑣𝑎𝑑𝑑𝑟 − 𝑠𝑡𝑎𝑟𝑡

𝑖𝑛𝑡𝑟𝑙𝑣
⌋ (mod 𝑁𝑏𝑎𝑛𝑘) (1)

Similar to the heap, interleave pools are managed by the OS, and
the runtime can request an expansion (similar to how mmap or brk
is used to expand the heap). We provide a pool for power-of-two
interleavings from 64B (one cache line) to 4kB (one page, see below
for larger interleavings), i.e. 7 interleave pools per processiii.
Physical Address: Each interleave pool is mapped to contiguous
physical pages. To ensure this, when the OS handles a page fault on
iiiWe reserve 1TB per interleave pool, which in total is 2.7% of the 48-bit virtual address
space.

an unmapped interleave pool virtual address 𝑣𝑎𝑑𝑑𝑟 , it will allocate
physical pages from the start of that interleave pool until 𝑣𝑎𝑑𝑑𝑟 , and
may copy data and remap pages to make sufficient space (similar to
how direct segment [11] or RMM [54] supports continuous virtual
to physical mapping). To complete the picture, the microarchitec-
ture is extended with an interleave override table (IOT, Table 1) at
each L2 and L3 cache controller.

Field Bits Description Field Bits Description

start,end 48 [start, end) phys. addr. intrlv 16 Interleaving.

Table 1: Interleave Override Table (IOT)
Each entry overrides the interleave for physical addresses within

[𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑). The L2/L3 cache controller as well as the SEcore/SEL3
query this table to determine which bank a cache line is mapped
to, so that it can forward the request or offload/migrate the stream.
Since this table is accessed frequently (every L2 miss and L3 access),
mapping each interleave pool to contiguous physical addresses
ensures that only one IOT entry is required per interleave pool,
reducing the pressure on the size of IOT.
Other Interleavings: Interleavings below a cache line size (64B)
are not supported, as they spread a single cache line to multiple
L3 banks. This requires extra metadata to track sub-line coherence
states and is beyond this work. Large interleavings beyond a page
size (4kB) but aligning to page boundaries (e.g. 8kB, 12kB) are sup-
ported by mapping virtual pages to 4kB interleaved physical pages
at the desired L3 bankiv. Finally, interleavings that are not power-
of-two help reduce the padding overhead, and can be supported at
the cost of a more complicated division instead of a right shift in
Eq. 1 when querying the IOT. This is left as future work.
Other Interleave Patterns: Themapping from virtual addresses to
L3 banks (i.e. Eq 1) is a simple 1D linear pattern. More complicated
interleaving patterns can also be supported, e.g. a 2D pattern that
fills L3 banks in the order of quadrant, or a two-level wrapping
around that first wraps a few times within each row before moving
to the next row. These more sophisticated interleave patterns can
be supported by either changing how L3 banks are numbered or
enhancing Eq 1, and can provide more flexibility for the runtime to
optimize the data layout. However, we find that a simple 1D linear
pattern is expressive enough to achieve optimal spatial affinity for
the affine workloads we studied.

4.2 Affine Layout Optimizations
With the OS and microarchitectural extensions to expose the map-
ping from virtual addresses to L3 banks, it is already possible for
the application to customize the data layout. However, instead
of leaving this burden to the programmer, we provide a runtime
that automatically optimizes for the data layout and requires only
abstracted affinity information from the application.
Affine Affinity Alloc API: Fig 8(a) shows the API to allocate
an array with affinity information wrapped in the AffineArray
struct. Besides the size of the element (elem_size) and the number
of elements (num_elem), it also contains parameters to define the
affinity relationship between arrays (orange box in Fig 8(a)).
ivPhysical pages for these interleavings are not continuous and are tracked as 4kB
interleaving in the IOT.

Affinity Alloc: Taming Not-So Near-Data Computing MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

(a) Affine Affinity Alloc API

struct AffineArray {
 int elem_size; // Element size (byte).
 uint num_elem; // Number of elements.
 void* align_to; // Pointer to the aligned affine array.
 int align_p, align_q, align_x; // Alignment parameters.
 bool partition; // Partition the array across banks.
};
void* malloc_aff(const AffineArray& a);

(b) Inter-Array Affine Affinity

// Compute kernel:
// C[i] = A[i] + B[i];
// Allocate float A[N].
A = malloc_aff({sizeof(float), N,
 nullptr, 1, 1, 0, false});
// Align float B[N] with A[N];
B = malloc_aff({sizeof(float), N,
 A, 1, 1, 0, false});
// Align double C[N] with A[N];
C = malloc_aff({sizeof(double),N,
 A, 1, 1, 0, false});

0 1

0 10 1

0 10 1

0 1

0 1

0 1

4 5

4 54 5

4 54 5

4 5

4 5

4 5

6 7

6 76 7

6 76 7

6 7

6 7

6 7

2 3

2 32 3

2 32 3

2 3

2 3

2 3

0 1

0 1

0 1

4 5

4 5

4 5

6 7

6 7

6 7

2 3

2 3

2 3A[0:4]

B[0:4]

C[0:4]

Optimized Layout (8B $Line)

A[4:8]

B[4:8]

C[4:8]

Interleave: A[] 8B, B[] 8B, C[] 16B

(c) Intra-Array Affine Affinity Optimized Layout (8B $Line)

// Compute kernel:
// B[i,j] = A[i-1,j] + A[i+1,j]
// - 2*A[i,j];
// Optimize row affinity A[M,N].
A = malloc_aff({sizeof(float),M*N,
 nullptr, 1, 1, N, false});
// Align B[M,N] with A.
B = malloc_aff({sizeof(float),M*N,
 A, 1, 1, 0, false});

0 10 1

0 10 1

N-2 N-1N-2 N-1

N-2 N-1N-2 N-1

N N+1N N+1

N N+1N N+1

2N-2 2N-12N-2 2N-1

2N-2 2N-12N-2 2N-1

...

...

...

0 1

0 1

N-2 N-1

N-2 N-1

N N+1

N N+1

2N-2 2N-1

2N-2 2N-1

...

...

...

A[0,:]

B[0,:]

A[1,:]

B[1,:]

Figure 8: Affine Data Layout Optimizations

Inter-Array Affine Affinity: Fig 8(b) shows how the API is used
to optimize inter-array affine affinity. First, array A[N] is allocated
with all default parameters, and the runtime simply picks the default
interleaving, which is the cache line size (8B in Fig 8(b)). When
allocating array B[N], we specify that B[i] aligns with A[i] by
setting align_to to A. More generally, the affinity relationship
between the allocating array B[N] and the aligned-to array A[N] is
defined as:

𝐵 [𝑖]
𝑎𝑙𝑖𝑔𝑛𝑠 𝑡𝑜
−−−−−−−−→ 𝐴[𝑎𝑙𝑖𝑔𝑛_𝑝

𝑎𝑙𝑖𝑔𝑛_𝑞 × 𝑖 + 𝑎𝑙𝑖𝑔𝑛_𝑥] (2)

Here align_p and align_q control the ratio between the aligned
element indexes, and align_x adds the offset. Essentially, this is
equivalent to defining an affine transformation 𝑦 = 𝐴𝑥 +𝑏 between
the index space. These parameters can be straightforwardly de-
termined from the access pattern, e.g. to align B[i] to A[4i+2],
simply set align_p=4, align_q=1 and align_x=2.

The runtime records the metadata and selected layout of allo-
cated arrays. When allocating a new array with inter-array affine
affinity, it computes the interleaving of the new array by consider-
ing the ratio of element sizes and the interleaving of the aligned-to
array. Specifically, the new array’s interleaving is computed by:

𝑖𝑛𝑡𝑟𝑙𝑣𝐵 =
𝑒𝑙𝑒𝑚_𝑠𝑖𝑧𝑒𝐵
𝑒𝑙𝑒𝑚_𝑠𝑖𝑧𝑒𝐴

× 𝑎𝑙𝑖𝑔𝑛_𝑞
𝑎𝑙𝑖𝑔𝑛_𝑝 × 𝑖𝑛𝑡𝑟𝑙𝑣𝐴 (3)

By factoring in the ratio of element sizes, the runtime chooses
a 16B interleaving for the array double C[N] in Fig 8(b). From
the perspective of L3 bank locality, this effectively converts the
struct-of-array into an array-of-struct, with each element aligned
within the same L3 bank to eliminate data forward traffic.

Partition Vertexes with Spatial Queue

// Distribute vertex partition.
V = malloc_aff({sizeof(T), N,
 nullptr, 1, 1, 0, true});
// Align spatial queue to V[N].
Q = malloc_aff({sizeof(int), N,
 V, 1, 1, 0, false});
// Align queue tails to V[N].
T = malloc_aff({sizeof(int64), P,
 V, N/P, 1, 0, false});
// Push v into Q (atomic ++).
Q[T[v*P/N]++] = v;

Optimized Layout

V[...]

Q[...]

T[XY-1]

V[...]

Q[...]

T[(X-1)Y]

V[...]

Q[...]

T[Y-1]

V[0:N/P]

Q[0:N/P]

T[0]

...

...

...

...

Y Banks

X
 B

a
n

ks

Figure 9: Distribute Partitions (Assume 𝑃 = 𝑋 × 𝑌)

Once the interleaving is determined, the runtime allocates from
the corresponding interleave pool and ensures that the start bank is
offset by 𝑎𝑙𝑖𝑔𝑛_𝑥 × 𝑒𝑙𝑒𝑚_𝑠𝑖𝑧𝑒𝐴/𝑖𝑛𝑡𝑟𝑙𝑣𝐴 . Notice that in certain cases
the alignment is not perfect, i.e. when 𝑎𝑙𝑖𝑔𝑛_𝑥 × 𝑒𝑙𝑒𝑚_𝑠𝑖𝑧𝑒𝐴 is not
a multiple of 𝑖𝑛𝑡𝑟𝑙𝑣𝐴 , or when we have to round the computed
𝑖𝑛𝑡𝑟𝑙𝑣𝐵 to a valid interleaving supported by the system. However,
such cases can be mitigated by padding the array and supporting
interleavings that are not power-of-two in future work (see below).
Currently, in these cases, the runtime can simply fall back to the
baseline allocator without hurting the performance.
Freeing Data: Data allocated by malloc_aff() is freed with
free_aff(void*) (omitted in Fig 8(a)). Since the runtime records
the metadata for allocated arrays, it can put the space back to the
free list similar to a normal allocator.
Intra-Array Affine Affinity: We also support affinity within a
single array. In Fig 8(c) we access the column of the 2D array A[M,N]
and hence want to optimize for affinity between rows. This can
be done by setting align_to to nullptr and align_x to Nv. The
runtime picks a valid interleaving that minimizes the Manhattan
distance between A[i] and A[i+N]. For example, in Fig 8(c) one
row of array A[M,N] is mapped to one row of the mesh topology,
and the Manhattan distance is one hop to the bank below it. When
N is small, the runtime could also pick an interleaving that fits one
or multiple rows into a single bank to further reduce the distance.
Array B[M,N] is handled with inter-array affine affinity.
Distribute Partitions:We deliberately design the interface to only
specify the general affinity relationship, and delegate the runtime
to select a proper interleaving across platforms. However, the pro-
grammer may want to have a very coarse-grained interleaving,
especially when distributing a partitioned array across banks. Since
align_p/q/x can only specify the affinity information but not in-
terleaving, we add a partition flag to force an interleaving that
evenly distributes the array across all banks. Fig 9 shows a com-
mon use case in graph processing when the vertex array V[N] is
partitioned among banks by setting partition to true.
Use Case: Spatially Distributed Queue: Another more sophisti-
cated use case of affinity alloc is to implement a spatially distributed
queue. In the push-based BFS in Fig 2(c), the updated vertex v is
pushed into a global queue for future processing. However, the tail
of the global queue and the writing position is not colocated with
the vertex, requiring indirect traffic to push into the global queue.

Instead, in Fig 9 we allocate a spatially distributed queue, with
one sub-queue per partition. The tail pointer and data storage of
vFor intra-array affinity align_p|q=1, as otherwise the alignment is no longer affine.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Zhengrong Wang, Christopher Liu, Nathan Beckmann, and Tony Nowatzki

void* malloc_aff(uint size, // Alloc size.
 // Specify affinity addrs.
 int num_aff_addrs, void** aff_addrs);

void linked_list_append(Node *prev, T v)
 // Allocate new node near to prev.
 Node *n = malloc_aff(sizeof(Node), 1, &prev);
 n->v = v; n->nxt = prev->nxt; prev->nxt = n;

Optimized LayoutUnbalanced Layout

1

4

0

5

32
1
2

0
3
4 ...

1
2

0
3
4 ...

 Low Bank-Level Parallelism
 High Capacity Miss

...

Figure 10: Irregular Data Layout API

each sub-queue is aligned with the vertex partition, and when push-
ing a vertex v, it is pushed to the local sub-queue with no indirect
traffic. Affinity alloc supports mismatch between the number of
partitions P and L3 banks B (i.e. P≠B), but having them equal yields
better load balancing and higher performance. Priority queues, e.g.
MultiQueues [79], can also be implemented as one queue per bank.
Heap rearrangement involves pointer-chasing, which is supported
by NSC. This software optimization is not possible without affinity
alloc to control the data alignment.

5 IRREGULAR DATA LAYOUT
5.1 Support Irregular Layout
While affine access patterns are relatively simple to optimize, irreg-
ular access patterns such as indirect and pointer-chasing accesses
are data-dependent and are notorious for low spatial locality. How-
ever, with a small extension to the API, we show that affinity alloc
can optimize the data layout for irregular data structures without
extra modification to the OS or microarchitecture.
Irregular LayoutAPI: Fig 10 shows the irregular affinity allocation
API and function to allocate a new node to a linked list using affinity
alloc. In addition to the allocating size, the API can also provide
a list of affinity addresses that the newly allocated data should be
close to. In the linked list example, it is the previous node prev.
Affinity addresses should be within some interleave pool so that the
runtime can infer the mapped L3 bank. This simple yet powerful
API conveys sufficient information to the runtime to optimize for
irregular affinity while remaining oblivious to the actual allocated
data structure. We limit the maximal number of affinity addresses
per allocation to 32, and the application can sample a subset if there
are more affinity addresses.
Irregular Allocation: To allocate, the runtime rounds up the al-
locating size to a valid interleaving size. This usually incurs no
overhead, as irregular data structures often use allocation sizes that
are power-of-two and aligned to cache line granularity to avoid
false sharing. The runtime also maintains a free list for every valid
interleaving size and every bank. After selecting the bank to allo-
cate based on the affinity addresses and load balance (see §5.2), the
runtime allocates from the free list of that bank, and may require
the OS to expand the specific pool if running out of space.

0 3 4 6 8 0

1

2

31 2 3 0 0 3 0 2

Index

EdgeO
ri

g.
C

SR

1 2 3 0 0 3 0 2

Pointer

EdgeLi
n

ke
d

C

SR

Figure 11: Linked CSR Format
Free Data: To free an object allocated with irregular layout API,
we reuse the same interface free_aff(void*). The runtime dis-
tinguishes irregular layout objects from affine arrays by checking
if the address matches an allocated affine array. The interleaving
of the object can be directly inferred from the interleave pool it
belongs to. Since irregular layout objects are allocated at interleave
granularity, the runtime knows the size of the object and can free
the space by adding it back to the free list. Unlike conventional
allocators, the runtime maintains no meta-data for irregular layout
objects, avoiding space overheads for fine-grained allocations.

All modifications to support irregular data layout are limited to
application and runtime. The OS and microarchitecture only need to
handle coarse-grained interleave pools and physical address ranges.

5.2 Bank Select Policy
Simply optimizing for data affinity may result in pathological un-
balanced layout. For example, in the bottom left of Fig 10, the whole
linked list is allocated to a single bank, leading to low bank-level
parallelism and high capacity miss rate. Therefore, we design the
bank select policy to consider both data affinity and load balance.
Specifically, the runtime computes a score for each bank:

𝑠𝑐𝑜𝑟𝑒 = 𝑎𝑣𝑔_ℎ𝑜𝑝𝑠 + 𝐻 × (𝑙𝑜𝑎𝑑

𝑎𝑣𝑔_𝑙𝑜𝑎𝑑 − 1) (4)

Here 𝑎𝑣𝑔_ℎ𝑜𝑝𝑠 is the average hops to the provided affinity ad-
dresses, and 𝑙𝑜𝑎𝑑 is the number of irregular allocations to that
bank. 𝐻 is a weight coefficient to control how much the runtime
should emphasize load balancing. The bank with the minimal score
is selected. This score function is inspired by the one used by AB-
NDP [89] to optimize task scheduling, while here we extend it for
data allocation. We evaluate the sensitivity to 𝐻 in §7.

5.3 Data Structure Co-Optimization
Supporting irregular affinity allows the runtime to optimize the
data layout for a variety of data structures, provided that they offer
sufficient flexibility for data placement. This covers many important
pointer-based data structures, e.g. linked lists and trees. Such data
structures can benefit from affinity alloc without changing the data
organization itself, simply by adopting the new allocator API.

Similarly, our approach opens up many new codesign opportuni-
ties for coarse-grained data structures that are not flexible enough
to directly benefit from affinity alloc, e.g. the index array B[] in
A[B[i]] can only be remapped at page granularity with marginal
performance gain (Fig 6 in page 5). In this work, we focus on code-
signing graph representations to optimize data affinity.

Fig 11 shows a toy undirected graph and the original compressed
sparse row (CSR) format. In CSR format, each vertex has an index
pointing to its first edge. However, since the edges are stored in a
single array, we can only optimize for data affinity at very coarse

Affinity Alloc: Taming Not-So Near-Data Computing MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

System 2.0GHz, 8x8 Cores
OOO8 CPU 64 IQ, 72 LQ, 56 SQ+SB
(8-issue) 348 Int/FP RF, 224 ROB

Func. Units 8 Int ALU/SIMD (1 cy.)
4 Int Mult/Div (3/12 cy.)
4 FP ALU/SIMD (4 cy.)
4 FP Div (12 cy.)

L1 D/I TLB 64-entry, 8-way
L2/SEL3 TLB 2k/1k-entry, 16-way, 8 cy.
L1 I/D $ 32KB, 8-way, 2 cy.
Priv. L2 $ 256KB, 16-way, 16 cy.

Replacement Bimodal RRIP, 𝑝 = 0.03
L1 Bingo Pf. 8kB PHT, 2kB region
L2 Stride Pf. 16 streams, 16 pf./stream

NoC 8x8 mesh topology
32B 1 cy. bidirection link
5-stage router, multicast
X-Y routing, 4 mem. ctrls

Shared 20 cycles, MESI
L3 $ Static NUCA, 1kB interleave

16-way, 64 banks, 1MB/bank
total 64MB

DRAM 3200MHz DDR4 25.6 GB/s
4 channels at corners

SEcore 2kB FIFO, 12 streams
SEL3 768 streams, 64kB buf.

4 cy. compute init. lat.
IOT 16 regions

Table 2: System and 𝜇arch Parameters (cy.: cycle)

Benchmark Layout Parameters
pathfinder [22] Affine 1.5M entries, 8 iters

srad [22] Affine 1k×2k, 8 iters
hotspot [22] Affine 2k×1k, 8 iters

hotspot3D [22] Affine 256×1k×8, 8 iters
bfs [13] Linked CSR Kronecker generated

pr_push [13] Linked CSR 128k nodes 4M edges
sssp [13] Linked CSR A/B/C: 0.57/0.19/0.19

pr_pull [13] Linked CSR weight [1,255]
link_list Ptr-Chasing 8B key, 512 nodes/list

1 query/list, 1k lists
hash_join Ptr-Chasing 8B key, 256k ⊲⊳ 512k

Hit Rate 1/8
bin_tree Ptr-Chasing 128k nodes, 8B key

512k uniform lookups
Table 3: Workloads Parameters

granularity, i.e. partitioning the graph among banks with the affine
layout API. However, power-law graphs are hard to partition with
many inter-partition edges. We need more flexibility in the data
structure to optimize data affinity at finer granularity.

This motivates for a Linked CSR format (Fig 11), in which the
edges are stored in a linked list, and we can place each edge list node
closer to the pointed vertices by specifying the affinity addresses.
This is how we achieve the optimizations discussed in Fig 5 (page 4).
This comes with the cost of extra pointer-chasing between nodes,
which is usually much more expensive than the linear accesses in
the original CSR format. However, we argue that the tradeoffs in
near-data computing are very different: 1. Pointer-chasing over-
heads are amortized by indirect traffic reduction since each node
can hold multiple edges. For example, a 64B cache line can hold 14
edges of 4B after the 8B pointer. 2. Unlike conventional CPUs where
the run ahead distance is limited by the size of the reorder buffer
(ROB), in NDC the pointer-chasing task can be decoupled and run
ahead of the edge processing task, further hiding the latency.

Most importantly, co-optimizing the data structure with affinity
alloc unlocks the benefit of the fine-grained irregular layout at a
low cost (𝑂 (|𝐸 |) to scan the edges once). Such co-optimization is
the key to unlocking the full potential of near-data computing and
can be applied to other domains and near-data computing systems.

6 METHODOLOGY

Compiler and Runtime:We extend the open-source LLVM-based
near-stream computing compiler [96] to support predication on
streams and dynamic loop bounds (§2). Programs are compiled to
x86 extended with near-stream computing instructions. We imple-
ment the affinity alloc runtime in C++ and manually replace the
original malloc and free calls with affinity alloc API.
Simulator:We use gem5 v20.0+ [63] for execution-driven, cycle-
level simulation, extendedwith partial AVX-512 support. The caches
are extended with NSC support and the interleave override table
(IOT) to customize the interleaving between L3 banks. We emu-
late the syscall to expand interleave pools in gem5. We leverage
McPAT [59] to estimate the energy and area with the 22nm process.
Parameters and Configurations: Table 2 lists system parameters.

The only extension to the baseline near-stream computing system is
the IOT to support customized L3 interleavings for interleave pools.
The baseline OOO cores use advanced L1 and L2 prefetchers [8], but
no computation is offloaded (labelled as In-Core in §7). For near-
memory computing, Near-L3 offloads streams and the associated
computation to SEL3, but is oblivious to data affinity. For affinity
alloc, we simulate the modified binary with affinity information
conveyed to the runtime.
Benchmarks:We evaluate 10 OpenMP workloads compiled with
-O3 and AVX-512, covering various affine and irregular data layouts.
For graph workloads, In-Core and Near-L3 use the original CSR
format, while affinity alloc adopts the new linked CSR represen-
tation. For the pointer-chasing workloads, we randomly generate
and insert the nodes into the binary tree without balancing it. For
link_list and hash_join, they both search through linked lists,
but link_list has much longer lists (512) while the buckets in
hash_join are much smaller (<= 8). Table 2 summarizes the input
data size and the major data layout pattern for each benchmark.

Some benchmarks have alternate implementations, i.e. push and
pull-based for page_rank and bfs. For page_rank, we added the
push version besides the original pull-based implementation in GAP
suite [13], and select the best implementation for each configuration
(pull version for In-Core and push version forNear-L3 and affinity
alloc). For bfs, the state-of-the-art implementation dynamically
switches between pushing and pulling based on some runtime
heuristics [12]. We discuss the tradeoffs between pushing/pulling
and the heuristics we used in §7.

7 EVALUATION
We first evaluate affinity alloc on a variety of workloads, bank
selection policies and input sizes to demonstrate the performance
and energy efficiency benefits due to improved data affinity.We then
perform a detailed study on how key graph processing workloads
benefit from codesigning the data structure with affinity alloc.

7.1 General Evaluation

Overall Performance: Fig 12 shows the overall performance for
all benchmarks. The speedup and energy efficiency are normalized

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Zhengrong Wang, Christopher Liu, Nathan Beckmann, and Tony Nowatzki

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

3.2

pathfinder
hotspot

srad

hotspot3D pr bfs sssplink_list

hash_join
bin_tre

e

geomean.
0.0
0.5
1.0
1.5
2.0
2.5
3.0

En
er

gy
 E

ff.

pathfinder
hotspot

srad

hotspot3D pr bfs sssplink_list

hash_join
bin_tre

e avg.
0.0
0.2
0.4
0.6
0.8
1.0

No
C

Ho
ps

 &
 U

til
.

In-Core Near-L3 Aff-Alloc

NoC Util.
Offload
Data
Control

Figure 12: Overall Performance and Traffic Reduction

to Near-L3, while the NoC traffic is normalized to In-Core where
no computation is offloaded to the L3 cache. Overall, affinity alloc
achieves 7.53× speedup and 4.69× energy efficiency over In-Core,
and 2.26×/1.76× overNear-L3. The benefit comes from the reduced
NoC traffic for various messages: the data traffic to forward the
operand in affine workloads (e.g. stencil1d), the control traffic to
perform indirect remote accesses in graph workloads, as well as
the stream migration traffic to chase the pointer in pointer-based
data structures. Overall, affinity alloc reduces the network traffic
by 72% and 87% over Near-L3 and In-Core respectively, with 34%
NoC utilization.

For the microarchitecture, affinity alloc only introduces a small
interleave override table (IOT). Estimated with CACTI 7 [9], the
IOT takes 32kB (512B per bank), and accounts for 0.07mm2, less
than 0.1‰ of the whole chip.
Bank Selection Policy: Fig 13 shows the speedup and NoC traffic
when affinity alloc employs different bank selection policies for
irregular data layout, normalized to Rnd which randomly selects
the bank to allocate. Lnr selects the bank in a round-robin fashion,
whileMin-Hop always picks the bank with the least distance to
affinity addresses (same as setting 𝐻 = 0 in Eq 4). We also evaluate
the hybrid policy that considers both affinity information and load
balance with various 𝐻 , labeled as Hybrid-H. Higher 𝐻 forces the
policy to favor the less occupied bank to balance the load.

As expected, Rnd and Lnr are oblivious to the affinity informa-
tion and achieve similar performance. Lnr only outperforms Rnd
by 25% on link_list, as we allocate the nodes one by one and Lnr
allocates the node to the next bank, reducing the pointer-chasing
distance (about 60% traffic reduction). However, this is not opti-
mal compared to colocating neighboring nodes in the same bank,
which eliminates the need to migrate. Also, linear allocation is less
likely the case in real production scenarios, and when list nodes
are inserted randomly, Lnr would behave the same as Rnd.

On the other hand, Min-Hop optimizes the data affinity and

pr_push
pr_pull bfs sssp link_list

hash_join
bin_tre

e

geomean.
0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

pr_push
pr_pull bfs sssp link_list

hash_join
bin_tre

e avg.
0.0
0.2
0.4
0.6
0.8
1.0

No
C

Ho
ps

 &
 U

til
.

Rnd Lnr Min-Hop Hybrid-1 Hybrid-3 Hybrid-5 Hybrid-7

NoC Util.
Offload
Data
Control

Figure 13: Sensitivity on Irregular Layout Policies

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
4
8

12
16

At

om
icS

Timeline of bfs_push with Rnd (top), Min-Hops, Hybrid-5 (bot.)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
4
8

12
16

At

om
icS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Cycle

0
4
8

12
16

At

om
icS

bank-x-max
bank-x-75%
bank-x-avg
bank-x-25%
bank-x-min

Figure 14: Distribution of Atomic Stream in BFS-Push

achieves significant speedup and traffic reduction on most bench-
marks. However, since it does not consider the load balance, it may
produce pathological data layout. For example, in bin_tree it al-
locates the entire tree to a single bank. Although it successfully
eliminates the migration traffic (much less offload traffic in Fig 13),
it dramatically increases the miss rate to that L3 bank and results
in a huge slowdown.

The hybrid policy Hybrid-H avoids such pathological cases by
allocating to less occupied banks to balance the load. It also achieves
better bank-level parallelism and improves the performance over
Min-Hop. To see this, Fig 14 shows the timeline of number of
atomic streams per L3 bank in bfs_push for Rnd,Min-Hop and
Hybrid-5. We show the distribution by plotting the number of
atomic streams from least to most occupied bank. For example, the
25% line indicates that 75% banks have higher occupancy. Rnd has
higher stream occupancy, as it takes much longer for each stream
to finish the indirect atomic access. Hybrid-5 achieves better load
balancing thanMin-Hopwith a higher 25% line. Overall,Hybrid-5
achieves the highest performance with slightly more traffic, and is
chosen as the default policy.

Affinity Alloc: Taming Not-So Near-Data Computing MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

25
50
75

L3
 M

iss
 %

pathfinder hotspot srad hotspot3D geomean.
1
2
3

Sp
ee

du
p

1x (Default) 2x 4x 8x

Aff-Alloc
Near-L3

Figure 15: Speedup of Affine Layout on Large Inputs

0
5
10
15
20
25

L3
 M

iss
 %

pr_push bfs sssp geomean.0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

|V| = 217 (Default) |V| = 218 |V| = 219 |V| = 220

Hybrid-5
Min-Hops
Near-L3

Figure 16: Speedup of Linked CSR on Large Graphs

Large Input Size: Fig 15 shows the speedup and L3 miss rate of
affine workloads when scaling up the input size. Since this work
focuses on near-cache computing, the benefits of affinity alloc sig-
nificantly drop when the working set cannot fit in the cache (>75%
L3 miss rate for 8× input size). Fig 16 shows the same evaluation on
graph workloads. We scale up the graph by increasing the number
of vertices, while keeping the average vertex degree the same. Due
to the irregular access pattern, we can get some reuse on the vertex
properties, leading to <20% L3 miss rate. Therefore, affinity alloc
still yields some performance improvement for the 8× graph. When
|𝑉 | = 218, the graph can still fit in the L3 cache for pr_push and
bfs, but not for sssp due to extra edge weights.

The implication is that the already common optimization of
tiling and partitioning for the on-chip cache becomes even more
important. Also, as the on-chip cache continues to scale up (768MB
on AMD EPYC 7773X [1]), the number of tiles required can be
reduced (hence less overheads). This is orthogonal to this work.
When there is no reuse at all on the chip, future work could also
apply affinity alloc to align data in DRAM to benefit NDC techniques
near the memory controller or inside DRAM.

7.2 Graph Processing
Graph processing contains heavy indirect accesses and benefits
from improved data affinity provided by affinity alloc. Here we
evaluate codesigning the algorithm in NDC scenarios, as well as
sensitivity on graph structures.
Pushing vs. Pulling: Graph processing algorithms page_rank
and bfs have both push-based and pull-based implementations.
These approaches have different trade-offs: Pushing (i.e. top-down)
approach propagates updates to outgoing neighbors and is imple-
mented with atomic access, while pulling (i.e. bottom-up) queries
incoming neighbors and involves reduction. Near-data comput-
ing naturally supports remote atomic accesses, but suffers from
indirect reduction which requires collecting operands distributed
among LLC banks. On the other hand, general-purpose processors
can perform efficient reduction using registers, but suffer from
many coherence misses when contention on atomic accesses is
high. Overall, we observe that near-data computing usually favors
the push-based implementation, while in-core computing works
better with the pull-based one. In our evaluation, this is the default
choice for page_rank, in which all edges are active and processed
in each iteration.

0 1 2 3 4 5 6
Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ra
tio

Visited Nodes
Active Nodes
Scout Edges

Figure 17: BFS Iteration Characteristic

Switch
Push
Pull

In
-C
or
e

Switch
Push
Pull

N
ea

r-
L3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Switch
Push
Pull

Af
f-
Al
lo
c

Iter0 Iter1 Iter2 Iter3 Iter4 Iter5 Iter6

Pull Push

Figure 18: BFS Push vs. Pull Timeline

However, in bfs, each iteration has different characteristics
and may benefit from per-iteration choices between pushing and
pulling [12]. Fig 17 shows three key characteristics for iteration 𝑖:
Visited Nodes: Total visited nodes after iteration 𝑖; Active Nodes:
Visited nodes during iteration 𝑖; Scout Edges: Outgoing edges from
active nodes in iteration 𝑖 . All three are normalized to the total
number of nodes or outgoing edges in the graph. Fig 18 shows the
timeline of bfs using only pushing/pulling and a switching policy.

As expected for In-Core, pushing works well for the first and last
few iterations, as there are few active nodes and therefore fewer
coherence misses compared to the middle iterations. Iterations
in the middle (Iter2, Iter3 and Iter4 of In-Core in Fig 18) favor
pulling, as it avoids the overheads of coherencemisses on contended
vertices. More generally, the number of scout edges represents the
number of pushing operations in the next iteration, and the default
bfs implementation in GAP suite [13] switches to pulling if the
ratio of scout edges exceeds a threshold.

This trade-off is different in near-data computing, as it is much
cheaper to perform in-place atomic operations in L3 without the
overheads of coherence misses. Affinity alloc improves the spatial
locality and further reduces the overheads of remote atomic ac-
cesses. Therefore, near-data computing chooses pushing for more
iterations. For example, in Aff-Alloc only Iter3 uses pulling in
Fig 18, which suffers from excessive failed compare and exchange
operations on visited vertices and has a much lower active node
ratio compared to the scout edge ratio in the previous iteration
in Fig 17. We adopt this insight and extend the default switching
policy to estimate the chance of failed atomic operations by taking
into account the ratio of visited vertices for Aff-Alloc:
• 𝑃𝑢𝑠ℎ → 𝑃𝑢𝑙𝑙 : Visited Node > 40% and Scout Edge > 6%.
• 𝑃𝑢𝑙𝑙 → 𝑃𝑢𝑠ℎ: Awake Nodes < 25%.
We find this policy robust across all evaluated graphs. This study

and the linked CSR format shows that NDC poses many different
trade-offs that require software and data structure codesign.
Sensitivity to Node Degree: One fundamental difference between
affinity alloc and a conventional graph partitioning scheme is the
optimization granularity. Conventional graph partitioning divides

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Zhengrong Wang, Christopher Liu, Nathan Beckmann, and Tony Nowatzki

pr_push bfs sssp geomean.
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

D=4 D=8 D=16 D=32 D=64 D=128

Hybrid-5
Min-Hops
Near-L3

Figure 19: Speedup vs. Avg. Node Degree

Input Graph Type |Vertex| |Edge| Avg. Degree

twitch-gamers [80] Power Law 168,114 13,595,114 81
gplus [64] Power Law 107,614 13,673,453 127

Table 4: Real World Graphs

the graph into a few coarse-grained subgraphs, and usually strug-
gles for high-degree graphs. On the other hand, by co-optimizing
the data structure, affinity alloc can optimize data affinity at cache
line granularity and scales well with the connectivity.

To quantify this, Fig 19 shows the speedup of affinity alloc on
various synthesized power law graphs, normalized to Rnd. We
fix the total number of edges but change the average node degree.
Affinity alloc actually achieves higher speedup on high-degree
graphs (1.5× when 𝐷 = 4 and 2.4× when 𝐷 = 128). This is because
the edge list is sorted by outgoing vertex id (as is common practice),
and the longer the edge list, the more likely that outgoing vertices
of edges within one cache are mapped to the same or neighboring
banks. We believe affinity alloc provides a new angle to co-optimize
NDC and data structures.
Real World Graphs: We also evaluate affinity alloc on real-world
social network graphs. Table 4 lists the detailed information. These
power-law graphs have a high average degree and are hard to
partition. Fig 20 shows the speedup and traffic reduction of affinity
alloc on these graphs, normalized to Near-L3. Overall, affinity
alloc successfully optimizes the fine-grained irregular data layout,
and Hybrid-5 achieves 2.0× speedup over Near-L3. This clearly
demonstrates the benefit of co-optimizing the data structure and
affinity data layout for near-data computing.

8 DISCUSSION

Dynamic Data Structures: Although this work focuses on static
data structures (i.e. unchanged after creation), it is an interesting di-
rection to apply affinity alloc to dynamic data structures, especially
for those that are pointer-based (e.g. trees, linked CSR). A particu-
lar example is dynamic graph processing [3, 33, 45, 50, 85] which
queries evolving graphs. In this work we extend the static CSR for-
mat with pointers to provide the flexibility to support irregular lay-
out optimization, which needs some preprocessing. However, some
prior works already leverage pointer-based data structures similar
to linked CSR to flexibly insert and delete from the graph [46, 74],
which can naturally benefit from the improved spatial locality from
affinity alloc without extra preprocessing.

Generally, if the affinity requirement changes, e.g. reinserting
the tree node to a different location, the previous layout choice
becomes suboptimal. If the runtime is aware of the data structure
modification, e.g. via ‘realloc()’, the layout could also be dynami-
cally adjusted, or fall back to the default random layout if dynamic
remapping overhead is intolerable. This is left as future work.

pr_push bfs sssp
pr_push bfs sssp

geomean.
0.5
1.0
1.5
2.0
2.5

Sp
ee

du
p twitch-gamers gplus

pr_push bfs sssp
pr_push bfs sssp avg.

0.0
0.2
0.4
0.6
0.8
1.0

No
C

Ho
ps

 &
 U

til
.

Near-L3 Min-Hops Hybrid-5

NoC Util.
Offload
Data
Control

Figure 20: Performance on Real World Graphs

Fragmentation: One major challenge to support dynamic allo-
cation is to handle fragmentation. In principle, the major source
of fragmentation is limiting freed space in the interleave pool to
allocations with the same interleaving requirement (OS can still
reclaim pages at both ends by shrinking the interleave pool). For
example, considering three consecutively allocated arrays A[], B[]
and C[] in the same interleave pool. The free space from releasing
B[] can only be reused for data structures with the same interleav-
ing, as interleave pools are backed by contiguous physical addresses.
However, this fragmentation was not seen in our static application
set. A software solution is to compact the pool. Another possibility
is to dynamically break and merge interleave pools of the same
interleaving. In the above example, the single interleave pool can
be split into two: one for A[] and the other one for C[], and the free
space in between can be claimed for other interleaving or normal
allocations without the overhead of copying and compacting. This
requires a larger interleave override table (IOT) in microarchitec-
ture similar to prior works (e.g. RMM [54] has 32 range entries vs.
7 interleave pools in this work).

9 RELATEDWORK

MulticoreCaching andDynamicData Layout:Multicore caches
are physically distributed, giving rise to non-uniform cache access
(NUCA) [55]. Many dynamic NUCA (D-NUCA) designs have been
proposed that change the data layout to reduce data movement[7,
14–18, 21, 23–25, 31, 39, 51, 65, 83, 90, 91]. Unlike affinity alloc,
these designs do not offload computation near data. Rather, they
move frequently accessed data closer to the cores accessing it.

Several limitations make D-NUCA schemes hard to apply to
near-data computing. Early D-NUCAs treated the on-chip cache
banks as a hierarchy, gradually migrating data closer to cores that
access it[7, 16, 21, 25, 39, 51]. These designs require another layer of
directories to locate data dynamically. As a result, most accesses still
require an expensive global lookup, eliminating most of the benefit
of adapting the data layout. Later D-NUCAs control data layout via
the virtual memory system (i.e., page table and TLBs) so that no
additional directory lookup is required[7, 16–18, 35, 83, 84, 90, 91].
These single-lookup D-NUCAs significantly reduce data movement,
but can only control data layout at page granularity, which we have
shown is insufficient (Fig 6). Hotpad [92] designs a scratchpad
hierarchy for managed languages (e.g. Java), but does not optimize
for data affinity among banks.

Affinity Alloc: Taming Not-So Near-Data Computing MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Whirlpool [66] is a D-NUCA that controls data layout via the
memory allocator, similar to affinity alloc. Whirlpool uses the mem-
ory allocator to separate data into different “pools” and uses a
different data layout for each pool, letting the cache separate data
with different access patterns. By contrast, affinity alloc lets pro-
grammers express the affinity between related data and control the
layout so that related data is placed at the same location.

None of these works support single-lookup for fine-grained ir-
regular affinity, nor do they explore the benefit of co-optimizing
the software to enable flexible data placement.
Near-Data Computing: Various near-data approaches push com-
putation into different memory hierarchy levels to avoid unneces-
sary data movement: partial thread migration among cores [86],
near LLC [10, 75, 96, 97], on-chip network router [81], memory [4–
6, 20, 29, 30, 34, 40–44, 56, 58, 68, 89] and storage [57, 77, 103], and
even across multiple levels or substrates [19, 36, 52, 62, 93, 94]. We
can think of these as vertical near-data computing.

The scope of near-data computing can be broadened beyond
memory-hierarchy offloading to those that only have a horizontal
dimension: i.e. those that can map tasks to different locations de-
pending on locality. This includes works from the Swarm family of
ordered-algorithm accelerators [2, 48, 49, 76, 87] that use task hints
to map tasks near-data [47, 100]. Several prior multicore acceler-
ators [4, 72, 73] and reconfigurable architectures [26, 27, 69, 70]
have this capability. Most vertical near-data architectures have a
horizontal aspect. We focus on improving the effectiveness of hor-
izontal near-data, but future work could also optimize vertically
across levels.

Many of these works are oblivious to the data layout and take a
best effort approach to fall back to conventional execution when
near-data computing is not profitable, e.g. [6, 29, 43, 52, 62, 75, 88,
96]. Other techniques require manual data placement using im-
perative APIs, e.g. [4, 20, 30, 34, 44, 81]. Hong et al. [40] organize
the linked list nodes into the same HMC vault, and Gearbox [58]
performs hybrid partition on SpMV and SpMSpV. These techniques
are limited to a specific domain or affine workloads. Another line
of work [52, 88] leverages the compiler to reschedule computa-
tion to optimize the arrival window in NDC. However, it left the
mapping between address space and cache banks as future work.
Kandemir [53] proposes loop transformation to reduce reuse dis-
tance in space for affine loops. Although it does not handle irregular
accesses, it could be combined with affinity alloc to handle some
tricky cases with less user intervention, e.g. transforming the loop
to simplify the affinity requirements.

Affinity alloc is orthogonal to these techniques – it tackles the fun-
damental data layout problem in a systematic and programmable
fashion. These near-data techniques could all benefit from an affin-
ity alloc-like approach to improve data affinity. It is future work to
extend affinity allocation to consider multiple memory hierarchy
levels simultaneously.
Graph Processing: Near-data scheduling is a prevailing optimiza-
tion in graph processing accelerators [2, 4, 26, 38, 67, 72, 73, 78,
101, 102]. One use case is for vertex-centric graph processing, in
which vertex-updates are scheduled near vertex properties stor-
age [2, 4, 26, 38, 72, 73]. Our results suggest that our codesigned
linked CSR format plus affinity alloc would be effective for them.

10 CONCLUSION
This work systematically addresses the data layout problem in NDC
by constructing a clean layered design across the system. The appli-
cation only needs to specify the essential affinity information with
the extended allocator interface, and the runtime can automatically
optimize data affinity and load balance. More importantly, affinity
alloc opens up new design space to co-optimize data structures
with data affinity. This is a first but critical step to revisiting many
tradeoffs and realizing the full potential of the near-data computing
paradigm, where computation is truly near the data.

ACKNOWLEDGMENTS
This work was supported by funding from NSF grant CCF-2200831.
We sincerely thank our anonymous shepherd and reviewers for
their insights and suggestions.

REFERENCES
[1] 2023. AMD EPYC 7773X. https://www.amd.com/en/products/cpu/amd-epyc-

7773x
[2] Maleen Abeydeera and Daniel Sanchez. 2020. Chronos: Efficient Speculative

Parallelism for Accelerators. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’20).

[3] Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv
Gupta. 2023. CommonGraph: Graph Analytics on Evolving Data. In Proceedings
of the 28th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada)
(ASPLOS 2023). Association for Computing Machinery, New York, NY, USA,
133–145. https://doi.org/10.1145/3575693.3575713

[4] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2015. A scalable processing-in-memory accelerator for parallel graph pro-
cessing. In 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA). 105–117. https://doi.org/10.1145/2749469.2750386

[5] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-Enabled
Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Archi-
tecture. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture (Portland, Oregon) (ISCA ’15). Association for Computing Machin-
ery, New York, NY, USA, 336–348. https://doi.org/10.1145/2749469.2750385

[6] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim, Sung-Kyu Lim, and
Hyesoon Kim. 2021. FAFNIR: Accelerating Sparse Gathering by Using Efficient
Near-Memory Intelligent Reduction. In HPCA.

[7] Manu Awasthi, Kshitij Sudan, Rajeev Balasubramonian, and John Carter. 2009.
Dynamic hardware-assisted software-controlled page placement to manage
capacity allocation and sharing within large caches. In 2009 IEEE 15th In-
ternational Symposium on High Performance Computer Architecture. 250–261.
https://doi.org/10.1109/HPCA.2009.4798260

[8] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-Azad. 2019.
Bingo Spatial Data Prefetcher. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 399–411. https://doi.org/10.1109/
HPCA.2019.00053

[9] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New tools for interconnect exploration
in innovative off-chip memories. ACM Transactions on Architecture and Code
Optimization (TACO) 14, 2 (2017), 14.

[10] Saambhavi Baskaran, Mahmut Taylan Kandemir, and Jack Sampson. 2022. An
architecture interface and offload model for low-overhead, near-data, distributed
accelerators. In 2022 55th IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). 1160–1177. https://doi.org/10.1109/MICRO56248.2022.00083

[11] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. 2013. Efficient VirtualMemory for BigMemory Servers. SIGARCHComput.
Archit. News 41, 3 (June 2013), 237–248. https://doi.org/10.1145/2508148.2485943

[12] Scott Beamer, Krste Asanović, and David Patterson. 2012. Direction-Optimizing
Breadth-First Search. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (Salt Lake City, Utah) (SC
’12). IEEE Computer Society Press, Washington, DC, USA, Article 12, 10 pages.

[13] Scott Beamer, Krste Asanović, and David Patterson. 2017. The GAP Benchmark
Suite. arXiv:1508.03619 [cs.DC]

[14] B.M. Beckmann and D.A. Wood. 2004. Managing Wire Delay in Large Chip-
Multiprocessor Caches. In 37th International Symposium on Microarchitecture
(MICRO-37’04). 319–330. https://doi.org/10.1109/MICRO.2004.21

https://www.amd.com/en/products/cpu/amd-epyc-7773x
https://www.amd.com/en/products/cpu/amd-epyc-7773x
https://doi.org/10.1145/3575693.3575713
https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/2749469.2750385
https://doi.org/10.1109/HPCA.2009.4798260
https://doi.org/10.1109/HPCA.2019.00053
https://doi.org/10.1109/HPCA.2019.00053
https://doi.org/10.1109/MICRO56248.2022.00083
https://doi.org/10.1145/2508148.2485943
https://arxiv.org/abs/1508.03619
https://doi.org/10.1109/MICRO.2004.21

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Zhengrong Wang, Christopher Liu, Nathan Beckmann, and Tony Nowatzki

[15] Bradford M. Beckmann, Michael R. Marty, and David A. Wood. 2006. ASR:
Adaptive Selective Replication for CMP Caches. In 2006 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’06). 443–454. https:
//doi.org/10.1109/MICRO.2006.10

[16] Nathan Beckmann and Daniel Sanchez. 2013. Jigsaw: Scalable Software-defined
Caches. In Proceedings of the 22Nd International Conference on Parallel Architec-
tures and Compilation Techniques (Edinburgh, Scotland, UK) (PACT ’13). IEEE
Press, Piscataway, NJ, USA, 213–224. http://dl.acm.org/citation.cfm?id=2523721.
2523752

[17] Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. 2015. Scaling distributed
cache hierarchies through computation and data co-scheduling. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA).
538–550. https://doi.org/10.1109/HPCA.2015.7056061

[18] Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. 2015. Scaling distributed
cache hierarchies through computation and data co-scheduling. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 538–550.

[19] Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata
Ausavarungnirun, Jakub Beránek, Konstantinos Kanellopoulos, Kacper Janda,
Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana Stefan, Juan Gómez Luna,
Jakub Golinowski, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Giro-
lamo, Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler. 2021.
SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-
in-Memory Systems. In MICRO-54: 54th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (Virtual Event, Greece) (MICRO ’21). Association for
Computing Machinery, New York, NY, USA, 282–297. https://doi.org/10.1145/
3466752.3480133

[20] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S. Kim, R.
Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand, A. Norion, A. Scibisz,
S. Subramoneyon, C. Alkan, S. Ghose, and O. Mutlu. 2020. GenASM: A High-
Performance, Low-Power Approximate String Matching Acceleration Frame-
work for Genome Sequence Analysis. In 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). https://doi.org/10.1109/
MICRO50266.2020.00081

[21] Mainak Chaudhuri. 2009. PageNUCA: Selected policies for page-grain locality
management in large shared chip-multiprocessor caches. In 2009 IEEE 15th
International Symposium on High Performance Computer Architecture. 227–238.
https://doi.org/10.1109/HPCA.2009.4798258

[22] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Hetero-
geneous Computing. In Proceedings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC) (IISWC ’09). IEEE Computer Society, USA,
44–54. https://doi.org/10.1109/IISWC.2009.5306797

[23] Z. Chishti, M.D. Powell, and T.N. Vijaykumar. 2003. Distance associativity for
high-performance energy-efficient non-uniform cache architectures. In Proceed-
ings. 36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003.
MICRO-36. 55–66. https://doi.org/10.1109/MICRO.2003.1253183

[24] Z. Chishti, M.D. Powell, and T.N. Vijaykumar. 2005. Optimizing replication, com-
munication, and capacity allocation in CMPs. In 32nd International Symposium on
Computer Architecture (ISCA’05). 357–368. https://doi.org/10.1109/ISCA.2005.39

[25] Sangyeun Cho and Lei Jin. 2006. Managing Distributed, Shared L2 Caches
through OS-Level Page Allocation. In 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06). 455–468. https://doi.org/10.1109/
MICRO.2006.31

[26] Vidushi Dadu, Sihao Liu, and Tony Nowatzki. 2021. PolyGraph: Exposing the
Value of Flexibility for Graph Processing Accelerators. In Proceedings of the 48th
Annual International Symposium on Computer Architecture (Virtual Event, Spain)
(ISCA ’21). IEEE Press, 595–608. https://doi.org/10.1109/ISCA52012.2021.00053

[27] Vidushi Dadu and Tony Nowatzki. 2022. TaskStream: Accelerating Task-Parallel
Workloads by Recovering Program Structure. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). Association for
Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/
3503222.3507706

[28] Vidushi Dadu, JianWeng, Sihao Liu, and Tony Nowatzki. 2019. Towards General
Purpose Acceleration by Exploiting Common Data-Dependence Forms. In Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium onMicroarchitec-
ture (Columbus, OH, USA) (MICRO ’52). Association for Computing Machinery,
New York, NY, USA, 924–939. https://doi.org/10.1145/3352460.3358276

[29] Alexandar Devic, Siddhartha Balakrishna Rai, Anand Sivasubramaniam, Ameen
Akel, Sean Eilert, and Justin Eno. 2022. To PIM or Not for Emerging General
Purpose Processing in DDR Memory Systems. In Proceedings of the 49th Annual
International Symposium on Computer Architecture (New York, New York) (ISCA
’22). Association for Computing Machinery, New York, NY, USA, 231–244. https:
//doi.org/10.1145/3470496.3527431

[30] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi, B. Grot,
and D. Pnevmatikatos. 2017. The mondrian data engine. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA). https:

//doi.org/10.1145/3079856.3080233
[31] Haakon Dybdahl and Per Stenstrom. 2007. An Adaptive Shared/Private

NUCA Cache Partitioning Scheme for Chip Multiprocessors. In 2007 IEEE 13th
International Symposium on High Performance Computer Architecture. 2–12.
https://doi.org/10.1109/HPCA.2007.346180

[32] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire, and Dejan Kostić. 2019.
Make the Most out of Last Level Cache in Intel Processors. In Proceedings
of the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19).
Association for Computing Machinery, New York, NY, USA, Article 8, 17 pages.
https://doi.org/10.1145/3302424.3303977

[33] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao
Han, and Wenguang Chen. 2021. RisGraph: A Real-Time Streaming System for
Evolving Graphs to Support Sub-Millisecond Per-Update Analysis at Millions
Ops/s. In Proceedings of the 2021 International Conference on Management of Data
(Virtual Event, China) (SIGMOD ’21). Association for Computing Machinery,
New York, NY, USA, 513–527. https://doi.org/10.1145/3448016.3457263

[34] Siying Feng, Xin He, Kuan-Yu Chen, Liu Ke, Xuan Zhang, David Blaauw, Trevor
Mudge, and Ronald Dreslinski. 2022. MeNDA: A near-Memory Multi-Way
Merge Solution for Sparse Transposition and Dataflows. In Proceedings of the
49th Annual International Symposium on Computer Architecture (New York, New
York) (ISCA ’22). Association for Computing Machinery, New York, NY, USA,
245–258. https://doi.org/10.1145/3470496.3527432

[35] Yaosheng Fu, Tri M Nguyen, and David Wentzlaff. 2015. Coherence domain
restriction on large scale systems. In 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 686–698.

[36] Daichi Fujiki, Alireza Khadem, Scott Mahlke, and Reetuparna Das. 2022. Multi-
Layer In-Memory Processing. In 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO). 920–936. https://doi.org/10.1109/MICRO56248.
2022.00068

[37] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2019. Duality Cache for
Data Parallel Acceleration. In Proceedings of the 46th International Symposium on
Computer Architecture (Phoenix, Arizona) (ISCA ’19). Association for Computing
Machinery, New York, NY, USA, 397–410. https://doi.org/10.1145/3307650.
3322257

[38] T. J. Ham, L.Wu, N. Sundaram, N. Satish, andM.Martonosi. 2016. Graphicionado:
A high-performance and energy-efficient accelerator for graph analytics. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
1–13. https://doi.org/10.1109/MICRO.2016.7783759

[39] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki.
2009. Reactive NUCA: Near-Optimal Block Placement and Replication in Dis-
tributed Caches. SIGARCH Comput. Archit. News 37, 3 (June 2009), 184–195.
https://doi.org/10.1145/1555815.1555779

[40] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon, Hongsik Kim,
and John Kim. 2016. Accelerating Linked-List Traversal Through Near-Data
Processing. In Proceedings of the 2016 International Conference on Parallel Archi-
tectures and Compilation (Haifa, Israel) (PACT ’16). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/2967938.2967958

[41] Kevin Hsieh, Eiman Ebrahim, Gwangsun Kim, Niladrish Chatterjee, Mike
O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W Keckler.
2016. Transparent Offloading and Mapping (TOM): Enabling Programmer-
Transparent Near-Data Processing in GPU Systems. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA). IEEE Com-
puter Society.

[42] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu. 2016. Accelerating pointer
chasing in 3D-stacked memory: Challenges, mechanisms, evaluation. In 2016
IEEE 34th International Conference on Computer Design (ICCD). 25–32. https:
//doi.org/10.1109/ICCD.2016.7753257

[43] Jiayi Huang, Ramprakash Reddy Puli, Pritam Majumder, Sungkeun Kim, Rahul
Boyapati, Ki Hwan Yum, and Eun Jung Kim. 2019. Active-Routing: Compute
on the Way for Near-Data Processing. In 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 674–686.

[44] Mohsen Imani, Saikishan Pampana, Saransh Gupta, Minxuan Zhou, Yeseong
Kim, and Tajana Rosing. 2020. DUAL: Acceleration of Clustering Algorithms
using Digital-based Processing In-Memory. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 356–371. https://doi.
org/10.1109/MICRO50266.2020.00039

[45] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E. Gonzalez, and Ion
Stoica. 2021. TEGRA: Efficient Ad-Hoc Analytics on Evolving Graphs. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). USENIX Association, 337–355. https://www.usenix.org/conference/nsdi21/
presentation/iyer

[46] Wole Jaiyeoba and Kevin Skadron. 2019. GraphTinker: A High Performance
Data Structure for Dynamic Graph Processing. In 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 1030–1041. https://doi.org/10.
1109/IPDPS.2019.00110

[47] Mark C. Jeffrey, Suvinay Subramanian, Maleen Abeydeera, Joel Emer, and Daniel
Sanchez. 2016. Data-Centric Execution of Speculative Parallel Programs. In

https://doi.org/10.1109/MICRO.2006.10
https://doi.org/10.1109/MICRO.2006.10
http://dl.acm.org/citation.cfm?id=2523721.2523752
http://dl.acm.org/citation.cfm?id=2523721.2523752
https://doi.org/10.1109/HPCA.2015.7056061
https://doi.org/10.1145/3466752.3480133
https://doi.org/10.1145/3466752.3480133
https://doi.org/10.1109/MICRO50266.2020.00081
https://doi.org/10.1109/MICRO50266.2020.00081
https://doi.org/10.1109/HPCA.2009.4798258
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/MICRO.2003.1253183
https://doi.org/10.1109/ISCA.2005.39
https://doi.org/10.1109/MICRO.2006.31
https://doi.org/10.1109/MICRO.2006.31
https://doi.org/10.1109/ISCA52012.2021.00053
https://doi.org/10.1145/3503222.3507706
https://doi.org/10.1145/3503222.3507706
https://doi.org/10.1145/3352460.3358276
https://doi.org/10.1145/3470496.3527431
https://doi.org/10.1145/3470496.3527431
https://doi.org/10.1145/3079856.3080233
https://doi.org/10.1145/3079856.3080233
https://doi.org/10.1109/HPCA.2007.346180
https://doi.org/10.1145/3302424.3303977
https://doi.org/10.1145/3448016.3457263
https://doi.org/10.1145/3470496.3527432
https://doi.org/10.1109/MICRO56248.2022.00068
https://doi.org/10.1109/MICRO56248.2022.00068
https://doi.org/10.1145/3307650.3322257
https://doi.org/10.1145/3307650.3322257
https://doi.org/10.1109/MICRO.2016.7783759
https://doi.org/10.1145/1555815.1555779
https://doi.org/10.1145/2967938.2967958
https://doi.org/10.1109/ICCD.2016.7753257
https://doi.org/10.1109/ICCD.2016.7753257
https://doi.org/10.1109/MICRO50266.2020.00039
https://doi.org/10.1109/MICRO50266.2020.00039
https://www.usenix.org/conference/nsdi21/presentation/iyer
https://www.usenix.org/conference/nsdi21/presentation/iyer
https://doi.org/10.1109/IPDPS.2019.00110
https://doi.org/10.1109/IPDPS.2019.00110

Affinity Alloc: Taming Not-So Near-Data Computing MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Proceedings of the 49th annual IEEE/ACM international symposium on Microar-
chitecture (MICRO-49).

[48] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez. 2015. A scalable
architecture for ordered parallelism. In 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 228–241. https://doi.org/10.1145/
2830772.2830777

[49] M. C. Jeffrey, V. A. Ying, S. Subramanian, H. R. Lee, J. Emer, and D. Sanchez. 2018.
Harmonizing Speculative and Non-Speculative Execution in Architectures for
Ordered Parallelism. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 217–230. https://doi.org/10.1109/MICRO.2018.00026

[50] Xiaolin Jiang, Chengshuo Xu, Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2021.
Tripoline: Generalized Incremental Graph Processing via Graph Triangle In-
equality. In Proceedings of the Sixteenth European Conference on Computer Sys-
tems (Online Event, United Kingdom) (EuroSys ’21). Association for Computing
Machinery, New York, NY, USA, 17–32. https://doi.org/10.1145/3447786.3456226

[51] Lei Jin and Sangyeun Cho. 2009. SOS: A Software-Oriented Distributed Shared
Cache Management Approach for Chip Multiprocessors. In 2009 18th Interna-
tional Conference on Parallel Architectures and Compilation Techniques. 361–371.
https://doi.org/10.1109/PACT.2009.14

[52] Mahmut Taylan Kandemir, Jihyun Ryoo, Xulong Tang, and Mustafa Karakoy.
2021. Compiler Support for near Data Computing. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (Virtual
Event, Republic of Korea) (PPoPP ’21). Association for Computing Machinery,
New York, NY, USA, 90–104. https://doi.org/10.1145/3437801.3441600

[53] Mahmut Taylan Kandemir, Xulong Tang, Hui Zhao, Jihyun Ryoo, and Mustafa
Karakoy. 2021. Distance-in-Time versus Distance-in-Space. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing
Machinery, New York, NY, USA, 665–680. https://doi.org/10.1145/3453483.
3454069

[54] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill,
Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Ünsal.
2015. Redundant Memory Mappings for Fast Access to Large Memories. In Pro-
ceedings of the 42nd Annual International Symposium on Computer Architecture
(Portland, Oregon) (ISCA ’15). Association for Computing Machinery, New York,
NY, USA, 66–78. https://doi.org/10.1145/2749469.2749471

[55] Changkyu Kim, Doug Burger, and Stephen W. Keckler. 2002. An Adaptive,
Non-Uniform Cache Structure for Wire-Delay Dominated on-Chip Caches. In
Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (San Jose, California) (ASPLOS
X). Association for Computing Machinery, New York, NY, USA, 211–222. https:
//doi.org/10.1145/605397.605420

[56] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal
Mukhopadhyay. 2016. Neurocube: A Programmable Digital Neuromorphic
Architecture with High-Density 3D Memory. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). 380–392. https:
//doi.org/10.1109/ISCA.2016.41

[57] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing Li, Hung-
Wei Tseng, Steven Swanson, and Murali Annavaram. 2017. Summarizer: Trad-
ing Communication with Computing near Storage. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture (Cambridge,
Massachusetts) (MICRO-50 ’17). Association for Computing Machinery, New
York, NY, USA, 219–231. https://doi.org/10.1145/3123939.3124553

[58] Marzieh Lenjani, Alif Ahmed, Mircea Stan, and Kevin Skadron. 2022. Gearbox: A
Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-
Based Accelerators. In Proceedings of the 49th Annual International Symposium
on Computer Architecture (New York, New York) (ISCA ’22). Association for
Computing Machinery, New York, NY, USA, 218–230. https://doi.org/10.1145/
3470496.3527402

[59] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. [n. d.]. McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore architectures. In MICRO ’09.

[60] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao. 2018. Processing-in-Memory for
Energy-Efficient Neural Network Training: A Heterogeneous Approach. In 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
https://doi.org/10.1109/MICRO.2018.00059

[61] Sihao Liu, Jian Weng, Dylan Kupsh, Atefeh Sohrabizadeh, Zhengrong Wang,
Licheng Guo, Jiuyang Liu, Maxim Zhulin, Rishabh Mani, Lucheng Zhang, Ja-
son Cong, and Tony Nowatzki. 2022. OverGen: Improving FPGA Usability
through Domain-specific Overlay Generation. In 2022 55th IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). 35–56. https://doi.org/10.1109/
MICRO56248.2022.00018

[62] Elliot Lockerman, Axel Feldmann, Mohammad Bakhshalipour, Alexandru
Stanescu, Shashwat Gupta, Daniel Sanchez, and Nathan Beckmann. 2020. Livia:
Data-Centric Computing Throughout the Memory Hierarchy. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’20). Association for Computing Machinery, New York, NY, USA, 417–433.

https://doi.org/10.1145/3373376.3378497
[63] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico

Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Srikant Bharad-
waj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho,
Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst,
Wendy Elsasser, Marjan Fariborz, Amin Farmahini-Farahani, Pouya Fotouhi,
Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus Hanind-
hito, Andreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian
Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang,
Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza
Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian
Menard, Andrea Mondelli, Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa
Nguyen, Nikos Nikoleris, Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto,
Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sandberg, Javier Se-
toain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo
Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong Wang,
Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, and Éder F. Zu-
lian. 2020. The gem5 Simulator: Version 20.0+. In CoRR, Vol. abs/2007.03152.
https://arxiv.org/abs/2007.03152

[64] Julian McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles in
Ego Networks. In Proceedings of the 25th International Conference on Neural In-
formation Processing Systems - Volume 1 (Lake Tahoe, Nevada) (NIPS’12). Curran
Associates Inc., Red Hook, NY, USA, 539–547.

[65] Javier Merino, Valentin Puente, and Jose A. Gregorio. 2010. ESP-NUCA: A
low-cost adaptive Non-Uniform Cache Architecture. In 2010 16th International
Symposium on High-Performance Computer Architecture (HPCA’10). 1–10. https:
//doi.org/10.1109/HPCA.2010.5416641

[66] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2016. Whirlpool:
Improving Dynamic Cache Management with Static Data Classification. In
Proceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems (Atlanta, Georgia, USA) (AS-
PLOS ’16). Association for Computing Machinery, New York, NY, USA, 113–127.
https://doi.org/10.1145/2872362.2872363

[67] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and
Hyesoon Kim. 2017. Graphpim: Enabling instruction-level pim offloading in
graph computing frameworks. In 2017 IEEE International symposium on high
performance computer architecture (HPCA). IEEE.

[68] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C. . Y. Cher,
C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer, T. W. Fox, D. S. Gallo,
L. Grinberg, J. A. Gunnels, A. C. Jacob, P. Jacob, H. M. Jacobson, T. Karkhanis,
C. Kim, J. H. Moreno, J. K. O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S.
Rosenburg, K. D. Ryu, O. Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam,
and Z. Sura. 2015. Active Memory Cube: A processing-in-memory architecture
for exascale systems. IBM Journal of Research and Development 59, 2/3 (2015).
https://doi.org/10.1147/JRD.2015.2409732

[69] Quan M. Nguyen and Daniel Sanchez. 2021. Fifer: Practical Acceleration of
Irregular Applications on Reconfigurable Architectures. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (Virtual Event,
Greece) (MICRO ’21). Association for Computing Machinery, New York, NY,
USA, 1064–1077. https://doi.org/10.1145/3466752.3480048

[70] Quan M. Nguyen and Daniel Sanchez. 2023. Phloem: Automatic Acceleration
of Irregular Applications with Fine-Grain Pipeline Parallelism. In 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
1262–1274. https://doi.org/10.1109/HPCA56546.2023.10071026

[71] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-Dataflow Acceleration. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA
’17). ACM, New York, NY, USA, 416–429. https://doi.org/10.1145/3079856.
3080255

[72] M. Orenes-Vera, E. Tureci, D.Wentzlaff, andM.Martonosi. 2023. Dalorex: AData-
Local Program Execution and Architecture for Memory-bound Applications. In
2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE Computer Society, Los Alamitos, CA, USA, 718–730. https:
//doi.org/10.1109/HPCA56546.2023.10071089

[73] Marcelo Orenes-Vera, Esin Tureci, David Wentzlaff, and Margaret
Martonosi. 2023. Massive Data-Centric Parallelism in the Chiplet Era.
arXiv:2304.09389 [cs.DC]

[74] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. 2021. Terrace:
A Hierarchical Graph Container for Skewed Dynamic Graphs. In Proceedings
of the 2021 International Conference on Management of Data (Virtual Event,
China) (SIGMOD ’21). Association for Computing Machinery, New York, NY,
USA, 1372–1385. https://doi.org/10.1145/3448016.3457313

[75] Ashutosh Pattnaik, Xulong Tang, Onur Kayiran, Adwait Jog, Asit Mishra, Mah-
mut T Kandemir, Anand Sivasubramaniam, and Chita R Das. 2019. Opportunistic
computing in gpu architectures. In Proceedings of the 46th International Sympo-
sium on Computer Architecture. 210–223.

[76] Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey. 2022. A Scalable

https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1109/MICRO.2018.00026
https://doi.org/10.1145/3447786.3456226
https://doi.org/10.1109/PACT.2009.14
https://doi.org/10.1145/3437801.3441600
https://doi.org/10.1145/3453483.3454069
https://doi.org/10.1145/3453483.3454069
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1145/605397.605420
https://doi.org/10.1145/605397.605420
https://doi.org/10.1109/ISCA.2016.41
https://doi.org/10.1109/ISCA.2016.41
https://doi.org/10.1145/3123939.3124553
https://doi.org/10.1145/3470496.3527402
https://doi.org/10.1145/3470496.3527402
https://doi.org/10.1109/MICRO.2018.00059
https://doi.org/10.1109/MICRO56248.2022.00018
https://doi.org/10.1109/MICRO56248.2022.00018
https://doi.org/10.1145/3373376.3378497
https://arxiv.org/abs/2007.03152
https://doi.org/10.1109/HPCA.2010.5416641
https://doi.org/10.1109/HPCA.2010.5416641
https://doi.org/10.1145/2872362.2872363
https://doi.org/10.1147/JRD.2015.2409732
https://doi.org/10.1145/3466752.3480048
https://doi.org/10.1109/HPCA56546.2023.10071026
https://doi.org/10.1145/3079856.3080255
https://doi.org/10.1145/3079856.3080255
https://doi.org/10.1109/HPCA56546.2023.10071089
https://doi.org/10.1109/HPCA56546.2023.10071089
https://arxiv.org/abs/2304.09389
https://doi.org/10.1145/3448016.3457313

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Zhengrong Wang, Christopher Liu, Nathan Beckmann, and Tony Nowatzki

Architecture for Reprioritizing Ordered Parallelism. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (New York, New
York) (ISCA ’22). Association for Computing Machinery, New York, NY, USA,
437–453. https://doi.org/10.1145/3470496.3527387

[77] Weikang Qiao, Jihun Oh, Licheng Guo, Mau-Chung Frank Chang, and Jason
Cong. 2021. FANS: FPGA-Accelerated Near-Storage Sorting. In 2021 IEEE 29th
Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 106–114. https://doi.org/10.1109/FCCM51124.2021.00020

[78] Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta. 2020. GraphPulse: An
Event-Driven Hardware Accelerator for Asynchronous Graph Processing. In
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). 908–921. https://doi.org/10.1109/MICRO50266.2020.00078

[79] Hamza Rihani, Peter Sanders, and Roman Dementiev. 2015. MultiQueues: Simple
Relaxed Concurrent Priority Queues. In Proceedings of the 27th ACM Symposium
on Parallelism in Algorithms and Architectures (Portland, Oregon, USA) (SPAA
’15). Association for Computing Machinery, New York, NY, USA, 80–82. https:
//doi.org/10.1145/2755573.2755616

[80] Benedek Rozemberczki and Rik Sarkar. 2021. Twitch Gamers: a Dataset for
Evaluating Proximity Preserving and Structural Role-based Node Embeddings.
arXiv:2101.03091 [cs.SI]

[81] Karthik Sangaiah, Michael Lui, Ragh Kuttappa, Baris Taskin, and Mark Hemp-
stead. 2020. SnackNoC: Processing in the Communication Layer. In 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
461–473. https://doi.org/10.1109/HPCA47549.2020.00045

[82] Fabian Schuiki, Florian Zaruba, Torsten Hoefler, and Luca Benini. 2019. Stream
Semantic Registers: A Lightweight RISC-V ISA Extension Achieving Full Com-
pute Utilization in Single-Issue Cores. arXiv preprint arXiv:1911.08356 (2019).

[83] Brian C. Schwedock and Nathan Beckmann. 2020. Jumanji: The Case for Dy-
namic NUCA in the Datacenter. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 665–680. https://doi.org/10.1109/
MICRO50266.2020.00061

[84] Ali Sedaghati, Milad Hakimi, Reza Hojabr, and Arrvindh Shriraman. 2022. X-
Cache: A Modular Architecture for Domain-Specific Caches. In Proceedings of
the 49th Annual International Symposium on Computer Architecture (New York,
New York) (ISCA ’22). Association for Computing Machinery, New York, NY,
USA, 396–409. https://doi.org/10.1145/3470496.3527380

[85] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado: A System
For Real-Time Iterative Analysis Over Evolving Data. In Proceedings of the 2016
International Conference on Management of Data (San Francisco, California,
USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA,
417–430. https://doi.org/10.1145/2882903.2882950

[86] Keun Sup Shim,Mieszko Lis, Omer Khan, and Srinivas Devadas. 2015. The Execu-
tion Migration Machine: Directoryless Shared-Memory Architecture. Computer
48, 9 (sep 2015), 50–59. https://doi.org/10.1109/MC.2015.263

[87] Suvinay Subramanian, Mark C. Jeffrey, Maleen Abeydeera, Hyun Ryong Lee,
Victor A. Ying, Joel Emer, and Daniel Sanchez. 2017. Fractal: An Execution
Model for Fine-Grain Nested Speculative Parallelism. In Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA ’17).

[88] Xulong Tang, Orhan Kislal, Mahmut Kandemir, and Mustafa Karakoy. 2017.
Data Movement Aware Computation Partitioning. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture (Cambridge,
Massachusetts) (MICRO-50 ’17). Association for Computing Machinery, New
York, NY, USA, 730–744. https://doi.org/10.1145/3123939.3123954

[89] Boyu Tian, Qihang Chen, and Mingyu Gao. 2023. ABNDP: Co-Optimizing
Data Access and Load Balance in Near-Data Processing. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 3–17. https:
//doi.org/10.1145/3582016.3582026

[90] Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Jenga: Software-
Defined Cache Hierarchies. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). ACM,
New York, NY, USA, 652–665. https://doi.org/10.1145/3079856.3080214

[91] Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Nexus: A New
Approach to Replication in Distributed Shared Caches. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). 166–179.
https://doi.org/10.1109/PACT.2017.42

[92] Po-An Tsai, Yee Ling Gan, and Daniel Sanchez. 2018. Rethinking the Memory
Hierarchy for Modern Languages. In Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture (Fukuoka, Japan) (MICRO-51).
IEEE Press, 203–216. https://doi.org/10.1109/MICRO.2018.00025

[93] Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, and Tony Nowatzki.
2023. Infinity Stream: Portable and Programmer-Friendly In-/Near-Memory
Fusion. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York,
NY, USA, 359–375. https://doi.org/10.1145/3582016.3582032

[94] Zhengrong Wang, Christopher Liu, and Tony Nowatzki. 2022. Infinity Stream:

Enabling Transparent and Automated In-Memory Computing. IEEE Com-
puter Architecture Letters 21, 2 (2022), 85–88. https://doi.org/10.1109/LCA.
2022.3203064

[95] Zhengrong Wang and Tony Nowatzki. 2019. Stream-Based Memory Access
Specialization for General Purpose Processors. In Proceedings of the 46th Interna-
tional Symposium on Computer Architecture (ISCA). Association for Computing
Machinery, New York, NY, USA, 736–749. https://doi.org/10.1145/3307650.
3322229

[96] Zhengrong Wang, Jian Weng, Sihao Liu, and Tony Nowatzki. 2022. Near-Stream
Computing: General and Transparent Near-Cache Acceleration. In 2022 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
331–345. https://doi.org/10.1109/HPCA53966.2022.00032

[97] Zhengrong Wang, Jian Weng, Jason Lowe-Power, Jayesh Gaur, and Tony
Nowatzki. 2021. Stream Floating: Enabling Proactive and Decentralized Cache
Optimizations. In 2021 IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA). 640–653. https://doi.org/10.1109/HPCA51647.2021.
00060

[98] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki. 2020. DSAGEN:
Synthesizing Programmable Spatial Accelerators. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 268–281. https:
//doi.org/10.1109/ISCA45697.2020.00032

[99] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki. 2020. A Hybrid Systolic-
Dataflow Architecture for Inductive Matrix Algorithms. In 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 703–716.
https://doi.org/10.1109/HPCA47549.2020.00063

[100] Victor A Ying, Mark C Jeffrey, and Daniel Sanchez. 2020. T4: Compiling sequen-
tial code for effective speculative parallelization in hardware. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA). IEEE,
159–172.

[101] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis, and X.
Qian. 2018. GraphP: Reducing Communication for PIM-Based Graph Processing
with Efficient Data Partition. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). https://doi.org/10.1109/HPCA.2018.
00053

[102] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi
Wang, and Xuehai Qian. 2019. Graphq: Scalable pim-based graph process-
ing. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture.

[103] Chen Zou and Andrew A. Chien. 2022. ASSASIN: Architecture Support for
Stream Computing to Accelerate Computational Storage. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). 354–368. https://doi.
org/10.1109/MICRO56248.2022.00035

https://doi.org/10.1145/3470496.3527387
https://doi.org/10.1109/FCCM51124.2021.00020
https://doi.org/10.1109/MICRO50266.2020.00078
https://doi.org/10.1145/2755573.2755616
https://doi.org/10.1145/2755573.2755616
https://arxiv.org/abs/2101.03091
https://doi.org/10.1109/HPCA47549.2020.00045
https://doi.org/10.1109/MICRO50266.2020.00061
https://doi.org/10.1109/MICRO50266.2020.00061
https://doi.org/10.1145/3470496.3527380
https://doi.org/10.1145/2882903.2882950
https://doi.org/10.1109/MC.2015.263
https://doi.org/10.1145/3123939.3123954
https://doi.org/10.1145/3582016.3582026
https://doi.org/10.1145/3582016.3582026
https://doi.org/10.1145/3079856.3080214
https://doi.org/10.1109/PACT.2017.42
https://doi.org/10.1109/MICRO.2018.00025
https://doi.org/10.1145/3582016.3582032
https://doi.org/10.1109/LCA.2022.3203064
https://doi.org/10.1109/LCA.2022.3203064
https://doi.org/10.1145/3307650.3322229
https://doi.org/10.1145/3307650.3322229
https://doi.org/10.1109/HPCA53966.2022.00032
https://doi.org/10.1109/HPCA51647.2021.00060
https://doi.org/10.1109/HPCA51647.2021.00060
https://doi.org/10.1109/ISCA45697.2020.00032
https://doi.org/10.1109/ISCA45697.2020.00032
https://doi.org/10.1109/HPCA47549.2020.00063
https://doi.org/10.1109/HPCA.2018.00053
https://doi.org/10.1109/HPCA.2018.00053
https://doi.org/10.1109/MICRO56248.2022.00035
https://doi.org/10.1109/MICRO56248.2022.00035

	Abstract
	1 Introduction
	2 Background on Near-Data Baseline
	2.1 Basic Near-Stream Computing
	2.2 Near-Stream Computing Details

	3 Motivation and Overview
	3.1 Affine Data Layout
	3.2 Irregular Data Layout
	3.3 Affinity Alloc Approach Overview

	4 Affine Data Layout
	4.1 Mapping Virtual Addresses to L3 Banks
	4.2 Affine Layout Optimizations

	5 Irregular Data Layout
	5.1 Support Irregular Layout
	5.2 Bank Select Policy
	5.3 Data Structure Co-Optimization

	6 Methodology
	7 Evaluation
	7.1 General Evaluation
	7.2 Graph Processing

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

